• Title/Summary/Keyword: Nursery soils

Search Result 37, Processing Time 0.03 seconds

Effect of Different Nursery Soils and Seeding Amounts on Seedling Growth of Rice (벼 기계이앙시 상토종류와 파종량이 묘생육에 미치는 영향)

  • Kim, Wang Kyung;Sohn, Jae Keun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.19
    • /
    • pp.1-8
    • /
    • 2001
  • This experiment was conducted to determine the effect of nursery soils and seeding density on seedling growth characteristics in automatic facility for raising of rice seedlings. The seedling characteristics were evaluated for the 10-day and 15-day old seedlings grown in six different nursery soils including farm-made soils. Two levels of seeding amount, 250 g and 300 g/tray ($60{\times}30{\times}2.5$ cm), were applied to compare the seedling characteristics according to seeding density on different nursery soils. There were wide difference in soil components among the nursery soils tested. In acidity of nursery soils, 'Bunoog 2' was the highest, pH 5.1, and 'Samkyung' was the lowest, pH 8.6. The content of available phosphate was the highest value, 843 ppm, in 'Bunong 1' and the lowest (74 ppm) in farm-made soils. The total nitrogen content of 'Bunong 1, 2, 3' and 'Weonjo' soils was higher than there of 'Samkyung' and farm-made soils. There was no difference in plant height among three types of 'Bunong' soils (Bunong 1, 2, 3), but the seedling height grown in farm-made soils was shorter than there in other nursery soils. The plant heigh was slightly taller as the increase of seeding amount from 250 g to 300 g/tray, and the difference in plant height was larger in 15-day old seedlings as compared with 10-day old seedlings. Dry weight of seedlings grown for 15 days in three 'Bunong' soils was heavier than those in other nursery soils. Based on the growing characteristics of seedlings grown in different nursery soils, the heat result was obtained from a nursery soil, 'Bunoog 2', among six marketing nursery soils tested.

  • PDF

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

Effect of Different Bottom Seats in Seed Tray on Seedling Growth of Rice (벼 육묘상자 깔판종류가 묘생육에 미치는 영향)

  • Jung, Byung Won;Sohn, Jae Keun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.19
    • /
    • pp.23-29
    • /
    • 2001
  • This study was carried out to develop a seedling raising method without nursery soils in automatic raising facility of rice seedlings for machine transplanting. Pre-germinated seeds were sowed on the seed trays with three different seats such as paper seat, corrugated board, and polyethylene film instead of nursery soils. The growth characteristics of the seedlings for 20 days after sowing were compared with that of a conventional standard raising method with nursery soils. There was no difference in plant height of 10-day old seedlings among the different nursery methods, but the plant height of seedlings grown for 15 days after sowing in the trays with fivefold newspaper and nursery soils was significantly taller than those on other nursery conditions. Dry weight of seedlings grown in the tray with fivefold newspaper bottom was heavier than those in nursery trays with a corrugated board and a piece of polyethylene film. The seedlings grown in a nursery tray with fivefold newspaper showed better seedling quality and root-mat formation compared with the other nursery trays. This result suggests that the healthy seedlings for machine transplanting can be raised in the paper-sheet tray without nursery soils. The labour hours and cost required for the soil-free method using paper was reduced by about 49.3% and 26.6%, respectively, compared with the semi-adult seedling on nursery soils.

  • PDF

Effect of Nursery Soil Made of Expanded Rice Hull on Rice Seedling Growth (벼 육묘 생장에 미치는 팽화왕겨의 효과)

  • Kim, Je-Youn;Kim, Kyung-Min;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.179-183
    • /
    • 2003
  • In comparison of physicochemical properties between expanded rice hulls (ERH) and a commercial nursery soil (Bunong), the pH and content of organic matters were higher in ERH than those of Bunong soil. However, the content of available phosphate, $\textrm{NH}_4\textrm{-N}$ and $\textrm{NO}_3\textrm{-N}$ were lower in ERH as compared with Bunong soil. The growth characteristics of seedlings were evaluated for 15-day old seedlings grown in five different nursery soils including ERH. The plant height was the tallest (22.8cm) in Bunong soil and shortest (12.8cm) in ERH. There was no difference in number of leaves among five types of nursery soils. The best results based on the seedling quality and root intensity was obtained from the seedlings grown in the nursery soil which ERH was used for bedding and Bunong soil for covering in the seed tray. The weight of a seed tray with Bunong soils was 27% heavier than that of 'ERH + Bunong soil'.

Studies on the Mulberry Sapling 1. Soil Characteristics of Nursery Garden Producing Nonsprouting Sapling. (뽕나무 접목묘에 관한 연구 I. 활착불량상묘 발생 묘포지의 토양특성에 관한 연구)

  • Lee, Won-Ju;Jeong, Gwang-Yeong;Kim, Yeong-Taek
    • Journal of Sericultural and Entomological Science
    • /
    • v.27 no.1
    • /
    • pp.12-17
    • /
    • 1985
  • soil survey and chemical analysis on mulberry nursery garden were carried out to study the causes of the non-sprouting phenomenon occured seriously in Buy and Ogchun in 1983 and Sangju in 1984. In addition, 115 nursery garden soils taken from 21 sapling produsers in Chungbuk province were analyzed in 1984. The results were as follows, 1. Symptom of dead saplings was the highest in boron deficiency by 59% and the lowest in rot symptom. The rest of saplings by 34.9% were not detected any symptom. 2. The nursery gardens showen non-sprouting phonomenon were located along the stream. As the result, soil depth was shallow, around 20cm deep and subsoil composed with coarse sand and gravels. 3. Nursery soils were mostly strong acid, low in Ca and Mg content, especially B, whereas available phosphorus and potassium were abundant at some gardens, and deficient at others. 4. Application of red earth or borax to nursery garden, especially to paddy, increased sprouting rate. 5. Paddy nursery garden occupied by 52.8% of 60.8ha of total garden area in Chungbuk province. Ninty point five percent of the nursery garden was lower in pH than 6.5, 87.0% lower in K than 0.5me/100g, 40.8% lower in Ca than 6.5me/100g, 94.8% lower in Mg the 2.00me/100g 99.1% lower in B than 0.3ppm.

  • PDF

Fusarium oxysporum Protects Douglas-fir (Pseudotsuga menziesii) Seedlings from Root Disease Caused by Fusarium commune

  • Dumroese, R. Kasten;Kim, Mee-Sook;James, Robert L.
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.311-316
    • /
    • 2012
  • Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a century, but attempts to distinguish virulence by correlating morphological characteristics with results of pathogenicity tests were unsuccessful. Recent molecular characterization and pathogenicity tests, however, revealed that selected isolates of F. oxysporum are benign on Douglas-fir (Pseudotsuga menziesii) seedlings. Other morphologically indistinguishable isolates, which can be virulent, were identified as F. commune, a recently described species. In a replicated greenhouse study, inoculating Douglas-fir seedlings with one isolate of F. oxysporum prevented expression of disease caused by a virulent isolate of F. commune. Moreover, seedling survival and growth was unaffected by the presence of the F. oxysporum isolate, and this isolate yielded better biological control than a commercial formulation of Bacillus subtilis. These results demonstrate that an isolate of nonpathogenic F. oxysporum can effectively reduce Fusarium root disease of Douglas-fir caused by F. commune under nursery settings, and this biological control approach has potential for further development.

Quantifying Inhibitory Effects of Reclaimed Soils on the Shoot and Root Growth of Legume plant Lentil(Lens culinaris) (정화 처리토가 렌틸(콩과식물)의 지상부 및 뿌리 성장에 주는 영향에 대한 정량평가)

  • Park, Hyesun;Kang, Sua;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • A series of pot experiments were conducted to quantitatively estimate inhibitory effects of reclaimed soil on the growth of Lentil (Lens culinaris) with two soils remediated by land farming (DDC) and low temperature thermal desorption(YJ), respectively. After cultivation in a growth chamber for 8 days, plants were harvested for the analysis of 8 indices including chlorophyll-a and carotenoid in leaves, shoot fresh weight, root dry weight, root length, number of later roots, specific root length (SRL) as well as germination rate in comparison to control experiment conducted on nursery soil. Root length was estimated by SmartRoot program from the digital images of the roots. The results showed germination rate on YJ and DDC soil decreased 29 and 71%, respectively. In comparison to the control, the averaged value of the 8 indices for YJ and DDC soil showed overall growth inhibition was 48 and 68%, respectively. When the same experiment was conducted with 25% (W/W) vermiculate amended soil, plant growth on each soil was comparable to that of the control. The results implies reclaimed soils requires additional processes and/or amendments to reuse for plant growth.

The Relations between Growth and Physiological Characteristics of Potted Ginkgo Biloba L. Seedlings Treated with Simulated Acid Rain (人工酸性雨가 處理된 盆植한 은행나무幼苗의 生長과 生理的 特性과의 相關)

  • Kim, Gab-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.13-26
    • /
    • 1987
  • One-year-old seedlings of Ginkgo biloba, potted in three different soils (nursery soil, mixed and sandy soil), were treated with simulated acid rain (pH 2.0, 3.0, 4.0 and 5.0) and tap water (control, pH 6.4) during the growing seasons (1985. 4. 28 - 1985. 10. 19) to examine the effects of acid rain on growth and physiological characteristics, and the relations between seedling growth and physiological characteristics. The results obtained in this study were as follows: 1. The effects of soil types on the total, top and root dry weight per seedling were significant at 5% level, and those of the pH of the rain treated at 1% level. The total dry weight of the pH 3.0 sub-plots was the highest for nursery soil, while for mixed and sandy soils, those of the control and the pH 5.0 sub-plots were the highest, respectively. 2. The leaf surface areas of pH 2.0 sub-plots severely decreased after July, but those of other sub-plots were not affected. The correlations between growth and leaf surface area differed among soil-types, however, the highest positive correlation was found in September. 3. The injured leaf rate increased with decreasing pH levels of acid rain. Highly negative correlations between growth and injured leaf rate were found. 4. The lower the pH level of acid rain treated was, the more the chlorophyll content was measured at the beginning of treatment, and the more severely it decreased at late growing season. A negative correlations were found in August, September and Octobfer. 5. The photosynthetic ability decreased rapidly after July with decreasing pH levels. A highly positive correlation between growth and photosynthetic ability was found in August.

  • PDF

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -III. Effects on Chemical Properties of the Tested Soil- (인공산성우(人工酸性雨)가 은행(銀杏)나무 Ginkgo biloba L. 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -III. 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響)-)

  • Kim, Gab Tae;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.43-52
    • /
    • 1988
  • One-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains(pH 2.0, pH 3.0, pH 9.0 and pH 5.0) to examine the effects of simulated acid rain on the chemical properties of the tested soil. The seedlings were grown in a pot($4500cm^3$)containing one of three different soils(nursery soil, mixed soil and sandy soil). Simulated acid rain was made by diluting sulfuric and nitric acid solution($H^1SO^4$ : $HNO^3$ =3 : 1, V/V) with tap water and tap water(pH 6.4), and treated by 5mm each time for three minutes during the growing seasons(April to October 1985). Acid rain treatments were done three times per week to potted seedlings by spraying the solutions. The chemical properties of potting media were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows : 1. Exchangeable calcium and magnesium contents and base saturation of the soil decreased with decreasing pH levels of acid rain, and their decreasing rates were as follows : sandy soil was the highest, followed by mixed and nursery soils, However, exchangeable aluminum content rather increased as the pH levels decreased. 2. Available phosphate in the soil decreased as the pH levels of acid rain decreased. Its content increased in nursery soil, compared with those before acid gain treatment, Gut decreased in mined and sandy soils. 3. Soil sulfate and nitrate contents increased remarkably as the pH levels decreased, and the only significant difference in the sulfate was found among the pH levels. Soil sulfate content was the highest in nursery soil, followed by mixed and sandy soils.

  • PDF

Effects of Nitrogen Fertilization Rate at Different Nursery Soils on Seedling Characters and Endosperm Consumption in Rice Seedling (상토 종류별 질소시비량이 벼 어린모 묘소질 및 배아양분 소모에 미치는 영향)

  • Kim, Sang-Su;Choi, Min-Gue;Lee, Seong-Yong;Yoo, Chul-Hyun;Cho, Soo-Yeon;Jun, Byung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.514-520
    • /
    • 1996
  • To clarify the proper nitrogen application level for rasing rice infant seedling under different nursery soil, Dongjinbyeo was raised at seedling box with different basal nitrogen level. The results are as follows. The higher the nitrogen level was, the lower emergence rate and the lower establishment rate. The establishment rate was less than 90%, when the nitrogen was more than 2g/box in hill soil and more than 1g/box in paddy soil. The more the nitrogen level was, the higher the seedling height in hill soil, but was higher in the order of N-2, 3, 1 and 0g /box. Leaf number wasn't significantly different between nusery soils and among nitrogen levels when seedling was raised more than 6 days. The endosperm survival rate was decreased as the increased nitrogen level, but wasn't different between the nursery soils. Amount of root was decreased as the increased nitrogen level in paddy soil, but was heavier in the order of N-1, 0, 2 and 3g /box in hill soil. Mat formation was better as the nitrogen level was decreased in all nursery soils. Considering the emergence rate, seedling charactors and mat formation, the proper nitrogen levels seemed to be 2g /box for hill soil and 1g /box for paddy soil.

  • PDF