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One-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains(pH 2.0, pH 3.0,
pH 4.0 and pH 5.0) to examine the effects of simulated acid rain on the chemical properties of the tested
soil. The seedlings were grown in a pot:4500cm®’ containing one of three different soils(nursery soil, mixed
soil and sandy soil). Simulated acid rain was made by diluting sulfuric and nitric acid solution(H!'SO* :
HNO*=3:1, V/V) with tap water and tap water (pH 6.4), and treated by 5mm each time for three minutes
during the growing seasons{April to October 19851 . Acid rain treatments were done three times per week to
potted seedlings by spraying the solutions. The chemical properties of potting media were compared among
three soil types as well as among the various pH levels. The results obtained in this study were as follows :
1. Exchangeable calcium and magnesium contents and base saturation of the soil decreased with decreasing

pH levels of acid rain, and their decreasing rates were as follows ! sandy soil was the highest, followed

by mixed and nursery soils. However, exchangeable aluminum content rather increased as the pH levels

Effects of Simulated Acid Rain on Growth and
Physiological Characteristics of Ginkgo biloba L.
Seedlings and on Chemical Properties
- of the Tested Soil”
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ABSTRACT

decreased.

2. Available phosphate in the soil decreased as the pH levels of acid rain decreased. Iis content increased in
nursery soil, compared with those before acid rain treatment, but decreased in mixed and sandy soils.
3. Soil sulfate and nitrate contents increased remarkably as the pH levels decreased, and the only significant

difference in the sulfate was found among the pH levels. Soil sulfate content was the highest in nursery

soil, followed by mixed and sandy soils.
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Introduction

Due to buffering capacity, soils are less sensitive
to short-term acid precipitation events than
vegetation, streams of lakes. In general, agricul-
tural soils are less susceptible to adverse nutritional
effects than forest soils, because of a better nutrient
status, buffering capacity, fertilization and liming
treatrment® . Adverse effects are initiated by
acidity #3+364048)  Goj]
increased due to acid rain on central Europe during

the period 1966 through 1977°%.

increasing  soil acidity

Crcnan'®, Lee and Weber® reported soil cation
(Ca, Mg and K) leaching by artificial acid rain with
lysimeter experiments. The more severe cation
leaching occurred, the lower pH was treated.
Similar results were reported by Cronan ef al'?.,
Hutchinson?® and Johnson et «*®. Soil base
saturation was reduced by acid precipitation®”.
However soil nutrient leaching was differed from the
sulfate adsorption capacity of the soil"#6:284350
From the model experiments for predicting the
effects of acid rain on soil leachate, acid rain caused
slight increase in soil acidity and soil nutrient
leaching until soil sulfate adsorption has reached
equilibrium stage®® .,

High soil acidity caused increasing of exchang-
and alteration of ionic

eable aluminum '##*5%)

concentration in soil solution. The structure of

Eiait Kol Na &
%:{’ CEER T

Yol eaS oo,

£, AN gtk 9 TRl (LBe WHA =3 = 28

#

KKMEME Elrsty WEIE RS
N A\;],
b e1 @

S A E AR (1985 4H 280 ~10H 19H) <l #

fol WEAE MOHAT, WO WHTM, R4 L Y

A B

Fa-> BAERUEEC ok ZA od b obaiet

EE Il vl sled WE LA A = g vl

< | o:q

b o sulfate

Zguto]l pH 7ol HE Mol EESAU
> B sk of.

humus substance and their chemical properties®,
disturbance of nutrient phytoavailability and
nutrieni cycling were reported according to acid
precipitation®*%#9  Ag the soils become more
acidic, some trace metal ions increased in soil
solution® ; Al and Fe ions increased in soil solution
and on colloidal surfaces. These ions react with
phosphate to form a number of insoluble phosphate
minerals® . Fov et al'”. explained symptoms of Al
of P

dark green

injury ; foliar symptoms resemble those

deficiency{overall stunting . small,
leaves and late maturity ; purpling of stems, leaves
and leaf veins ; vyellowing and death of leaf tips; ;
root tips and lateral roots become thickened and
turn brown. Similar results were reported by
Hecht-Buchholz and Foy??,

In calcareous soils, acid precipitation was good
for plants with easy absorbing Fe and P°", and
acted beneficial factor for plant growth®”, and
raised phytoavailability of nitrogen in pine stands*®’.
Owing to the differences of soils in texture, base
saturation and cation exchange capacity, determina-
tion of soil buffering capacity and sensitivity to acid
precipitation varied from one to another241.5560
The sensitivity of soil to acidification depends on the
soil buffering capacity and pH. Non-calcareous soils
with low CEC,

sensitive to acidification®”.

a pH above 5.0 are the most
The objectives of this
study were to determine the effects of different pH

levels of simulated acid rain on soil properties ir
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pots where plants grow under controlled conditions.

Materials and Methods

Materials and Treatments
Plant materials, soils, simulated acid rain
treatment and experimental designs were the same

as those used in the previous report®”.

Soil Analysis

Soil texture was classified by pipette method and
cation exchange capacity was measured by
ammonium acetate method and acidity of soil
W/V) was

determined with Univerasl Digital pH-meter.

solution(air-dried soil : H20=1:1,

Exchangeable cations(Ca, Mg, K and Na) in air
—dried soil was leached first with neutral 1N NH,
OAc and its concentrations were determined by
atomic absorption flame spectrophotometry {Shi-
madzu, AA-610S). Base saturation was calculated
from the above figures and C.E.C. values of tested
soils.

Exchangeable aluminum was leached with IN-KCl
and its amounts were measured by colorimetric
eriochrome cyanine R method®®.

Available phosphate was leached with 0.03N NH,
F and 0.025N HCI, and its amounts were measured
by colorimetric molybdenum blue method (Bray No.
1

Sulfate was leached with acetate extracting
solution consisting of 39g ammonium acetate in 10600
ml of 0.25N acetic acid, and its concentration was
measured by precipitating BaSO, with BaCl,. The
degree of the resultant turbidity was measured
spectrophotometrically and compared with standard
solution*¥.

Nitrate was leached with the extracting solutions
consisting of 17.32g AL (SQ,), 18H,0, 1.28¢ H,BO;,
and 3.43g AgSO, in 1/ to water, and its
concentration was measured by nitrateion electrode

(Orion 901, lon Analyzer).

Results and Discussion

Mean values of such soil chemical properties as

soil acidity, exchangeable cations, base saturation,
exchangeable aluminum, available phosphate,
sulfate and nitrate measured on July 27, 1985,
during the treatment, and on October, 20, 1985, at

the end of treatment are listed in Tables 1 and 2.

Soil Acidity

The influences in soil pH were highly significant
at 1% level between the pH levels for each soil
types. As rain pH decreased, soil pH decreased. Its
decreasing rate was more obvious in sandy soil,
followed by mixed and nursery soil. It seems to be
related to the differences in soil buffering capacity
determined by soil texture, organic matter content,
exchangeable cation concentration and cation
exchange capacity of the tested soils. Such results
were similar to those reported by Ulrich et a/*®,
who observed decrease in soil pH in [entral} Europe
during the period 1966 through 1977, and those
mentioned by Abrahamsen e¢f «/¥., Bjor and
Teigen” and Rippon*®, who studied that soil pH
decreased with acid rain treatment. Lee ef al*".
reported that soil pH decreased with increasing SO,
fumigation. Thus, decrease in soil pH would be
explained by acid precipitation®*®*®*®  Mortvedt®®
and Wiklander® also reported that the sensitivity of
various soils to acid precipitation depended on the
buffering capacity, and Peterson*’ explained that
entisols, inceptisols, ultisols, spodozols and oxisols
were relatively sensitive to acid precipitation,
Except for the pH 2.0 level, most of soil pH values
measured in October were slightly higher than those
in July. Such results seemed to be due to proton
consumption through nutrient uptake by plants,
activity of soil microbes and other soil processes,
and increased exchangeable cations leached from
plant tissues!23%58

From these results, decrease in soil pH was true
according to acid precipitation, but degree of soil
pH change depended on the concentration of
hydrogen ion in precipitation, and neutralization and
ion exchange activities between hydroxyl attached
to aluminum and iron of colloidal soil particles*”.
Therefore, soil buffering capacity, might be

determined by cation exchange capacity, base
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saturation and sulfate adsorption capacity of the

soil, However, considering the fact that sulfate
adsorption capacity of the soil varied with the
increasing solubility of Al and Fe and did with
decreasing soil pH**® and that forest soils have
litter layer and relatively large amount of organic
matter, forest soil pH is expected to decrease with
less slow speed®®55%  From above

more  or

reports, the productivity of forest soils in Korea
seerried to become poor due to adverse effect of acid
rain,

05) 32,70)

because forest soil was acidic(pH 5.4+0.
and belonged to inceptisols, entisols and
ultisols in low cation exchange capacity and base

saturation 57-6%69

Exchangeable Cations and Base Saturation

Degree of the Soils

The differences in exchangeable calcium content
were significant between the levels of pH for all soil
types, and those in magnesium and potassium
contents were significant for some types of soil

(Tables 1 and 2).
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Exchangeable calcium content at pH 2.0 levels
were remarkably dropped for all soil types as rain
pH decreased, and those at other pH levels varied
with measuring time. In general, the lower pH of
the acid rain was treated, the lower contents of
exchangeable calcium were detected. These were
mainly resulted from the leaching of exchangeable
calcium by acid rain affected various results of
exchangeable calcium content, which might be
ascribed to calcium contained in simulated acid
rain, absorption by plants and leaching from plant
tissue or soils after acid rain treatment. In nursery
soil, exchangeable calcium content at most of the
pH levels increased after acid rain treatment except
for pH 2.0 level, and less slight reduced measured
on July 27 for pH 2.0 level than those in other soil
types. This means that nursery soil have higher
buffering capacity than other soil types. In mixed
and sandy soils, exchangeable calcium contents, in
general, decreased after acid rain treatment, which
indicated that more exchangeable calcium was

leached in these soils by acid rain than in nursery

Table 1. Mean values of soil chemical propertes measured on July 27, 1985 by the levels of pH for each soil

types
Soil pH Exchangeable cations Base Avail. SO, NO,
types Treatment {(1:1, (me/100g) Sat. Exch. Al P,Os -S -N
(CEC. Hs0) Ca Mg K Na % (me/100g) (Al Sat.) (ppm) {ppm) {ppm}
Nursery Before 4.91 3.18 .53 59 .35 38.30 1.38 11.37 41.29 45.25 4.50
Soil Control(pH 6.4) 4.89 a*** 3.73 a .59 .49 44 43.24 1.23 a 10.16 a 49.88 74.43 a 14.27 a
pH 5.0 4.82 ab 3.19b .47 .56 .28 37.15 1.58 a 13.01 a 54.51 119.10 ab 17.87 a
(12.14) pH 4.0 4.78 ab 3.24 b .53 .47 .42 38.33 1.54 a 12.69 a 53.89 141.90 bc 15.57 a
pH 3.0 4.65 b 3.33 ab .52 .58 .45 40.28 1.67 a 13.76 a 53.31 193.60 ¢ 19.47 a
pH 2.0 3.76 ¢ 2.94b .47 .51 .35 3510 2.40 b 19.80 b 44.95 1448.00 b 37.30 b
F-values 45.00**  3.69* 2.31 .39 2.95 .49 9.40** 9.41** 3.36 g913.1**  12.22**
Mixed Before 5.04 2.10 .3 .25 22 48.24 .67 10.54 23.31 32.78 3.90
Soil ControlipH 6.4) 5.00 a 2.25a 4l1a .34 .39 54.26a .45 a 7.96 a 31.65 a 52.59 a 15.00 b
pH 5.0 4.89 b 2.20a .34b .39 .31 51.60 ab .56 a 9.00 a 29.32 a §4.83a 14.90 b
'6.26) pH 4.0 4.85 b 2.15a .36 ab .34 .37 51.33ab .72 ab 11.40 ab 27.83ab  89.66 a 12.40 ab
pH 3.0 4.86 b 1.90a .32b .22 .26 43.08b .89 Db 14.16 b 19.38 bc 134.70 a 11.17 a
pH 2.0 3.16 ¢ 1.06 b .19 ¢ .29 231 2950 ¢ 1.56 ¢ 24.92 ¢ 14.84 ¢ 988.70 b 21.26 ¢
F-value 306.4°*  19.83°* 13.19** .53  3.07 14.90°* 29.42°*  30.53"*  5.86°  89.54*" 15.61""
Sandy Before 5.75 1.51 .26 .06 .21 62.02 .22 6.90 8.09 14.61 3.50
Soil ControlipH 6.4) 5.72a 1.45a .34 14 .38 70.31a .23 a 7.21 a 6.05a  36.0la 12.57 a
pH 5.0 5.45 b 1.41 a .28 .18 .34 67.8%a .25 a 7.50 a 3.85 ab 68.47 a 13.20 bc
(3.19) pH 4.0 5.37 b 1.50 a .26 .08 .29 64.74 a 27 a 8§.11 a 3.47 ab 70.32 a 9.13 ab
pH 3.0 5.25 b 1.55 a .23 .09 .32 63.19a 31 a 9.42 a 3.09 b 87.01 a 7.37 a
pH 2.0 3.30 ¢ 7% b 21 .08 .29 40.74b 140 b 42.66 b 1.56 b 545.40 b 13.87 ¢
F-value 214.7*%  24.21** 2.49 1.00 .38 24.05™* 143.4** 143.4** 3.99** 67.17°% 3.95**
* and ** indicare significances at 5% and 1% levels, respectively

*** Differences in letters in vertical columns indicate significant difference at 5% level for Duncan test.
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Table 2. Mean values of soil chemical properties measured on October 20, 1985 by the levels of pH for each soil types
Soil pH Exchangeable cations Base Avail, 50, NO,
types Treatment 1:1, (me/100g; Sat. Exch. Al P,Os -S -N
C.EC., H,0; Ca Mg K Na % {me/100g) (Al Sat.) (ppm) {ppm} {ppm}
Nursery Before 4.91 3.18 .53 59 .35 38.30 1.38 11.37 41.29 54.25 4.50
Soil Control’pH 6.4) 5.01a***3.54a 53a 37 .24 38.85a 1.53a  12.60a  51.97  76.77a 5004
pH 5.0 4.86 b 3.38ab 51 a .49 .28 38.44 a 1.62 a 13.35 a 48.28 106.00 a 7.47 a
(12.14) pH 4.0 4.83 bc 3.28ab .49 a .39 3L 36.93a 1.58 a 13.07 a 50.09 162.80 a 5.27 a
pH 3.0 4.72 ¢ 2.79b 43 a .35 .25 31.52b 1.73 a 14.25 a 46.67 204.50 a 4.83 a
pH 2.0 3.30d 1.16 ¢ .23 b .33 .29 16.53 ¢ 2.80b 23.04 b 36.63 2107.00 b 28.00 b
F-values 354.1*%  26.74** 16.52** 1.43 .32 34.71** 29.23** 29.46™" 1.30 95.68** 19.54**
Mixed Before 5.04 2.10 .35 .25 22 48.24 .67 10.54 23.31 32.78 3.90
Soil Control'pH 6.4) 5.05a 200a 30a .13 .29 43.34a 8a 13.06a 21.8la 72.28a 4.60a
pH 5.0 4.96 a 1.90a .30 a 12 19 40.04 a .86 a 13.74 a 17.43 ab 119.90 a 4.57 a
(6.26) pH 4.0 4.8 ab 1.9a .30a 12 28 4217 a .97 a 15.44 a 14.37bc 125.90 a 3.73 a
pH 3.0 4.78 b 1.85a .28a .15 234 42.01a 1.03 a 16.40 a 13.69 bc 181.70 a 3.80 a
pH 2.0 3.37 ¢ 62b 13b 11 .26 17.94b 1.85 b 24.55 b 10.64 ¢ 1130.00 b 13.37 b
F-value 160.2**  6.59** 39.61** .61 1.77 7.06" 9.18** 9.17** 7.25"* 36.30"" 11.39**
Sandy Before 5.7 1.51 .26 .06 21 62.02 .22 6.90 8.09 14.61 3.50
Soil Control pH 6.4° 6.01a 1.45a .26a .05a .19 50.17a .28a 8.4l a 60a 65.25a 4.13a
pH 5.0 5.42 b 1.51a .24 a 05a .21 61.09a .29a 8.81 a 00 a 73.68 a 3.40 a
03.19: pH 4.0 5.383 b 1.50 a .24 a 05a .20 60.59a .32a 9.62 a 1.27 ab 123.40 b 3.ys a
pH 3.0 5.14 ¢ 1.31a .22 ab .04ab .21 54.21a .37 a 11.24 a 1.00 a 157.00 b 2.60 a
pH 2.0 2.78 d .41 b .18 b 04 b .17 24.21b 157D 47.82 b 4.81 b 628.30 ¢ 7.73 ¢
F-value 836.4** 30.89"% 4.40* 4.66* .2%& 18.36"* 73.68** 73.72** 4.81* 476.3**  8.62°%*

* and ** indicate significances at 5% and 1% levels, respectively
*** Differences in letters in vertical columns indicate significant difference at 5% level for Duncan test.

L]
soil. From these results, it suggested that nursery

soil had the highest buffering capacity to acid rain,
followed by mixed and sandy soils.

Exchangeable magnesium content of the soils
decreased in all soil types as acid rain treatment
of

some pH levels including control increased slightly

increased. Exchangeable magnesium content
in July, but decreased in October, and the contents
were lower than those before treatment. In general,
it decreased as rain pH decreased, which seemed to
be resulted from magnesium leaching from soil by
acid rain treatment. It suggested that exchangeable
magnesium in soil might be more sensitive to acid
deposition than exchangeable calcium. Slight
increase in magnesium content of the soil treated
with high pH acid rain might be come from the
quantities of magnesium contained in acid rain and
leached from plant tissues.

The differences in exchangeable potassium content
of the soil between the levels of pH were not
significant in nursery and mixed soils, but those
measured in October in sandy soil were significant at

5% level(Tables 1 and 2). From these results, much

potassium leaching did not occur due to acid rain in
most of soil types except for low buffered, sandy
soil.

The differences in exchangeable sodium content of
the soil were not significant between the levels of
pH for all soil types. Thus, sodium leaching by acid
rain might not be problematic in any soil types.
at pH 2.0

decreased in all soil types as acid rain treatment

Base saturation of the soil level
increased, but those at other pH levels increased
slightly in July and then decreased in October.
Effects of acid rain treatment on base saturation
varied with soil types and with the levels of pH,
which may be resulted from the differences in
buffering capacity by cation exchange capacity and
proton consumption. In nursery soil, base saturation
at most of the pH levels increased after acid rain
treatment except for pH 2.0 and 3.0 levels, and less
slight reduced measured on July 27 for pH 2.0 level
than those in other soil types. This means that
nursery soil have higher buffering capacity than
other soil types. In mixed and sandy soils. base
decreased after acid rain

saturations, in general,



48  ATERtEMZt W& T Ginkgo biloba L. hE9] 45, HBEH ik 9 iR (LBM HEA i B8

treatment, and sharply reduced measured on July 27
for pH 2.0 levels than those in nursery soil. From
these results, it suggested that nursery soil had the
highest buffering capacity to acid rain, followed by
mixed and sandy soils. Decrease in soil base
saturation was mainly due to calcium or magnesium
leaching. These results were similar to those
reported by Cronan'® and Cronan ef al.'¥, who
found magnesium, calcium and potassium leaching
in balsam-fir forest due to acid rain, and those
reported by Lee and Weber®® in lysimeter
experiment. Hutchinson®® and Johnson et af*"%®.
also explained soil nutrient loss and reduction of
base saturation®*”*® due to acid rain. The
differences in soil nutrient leaching between soil
types might be resulted from the differences in soil
nutrient status and sulfate adsorption capacity as

reported by Abrahamsen! and Reuss*®.

Exchangeable Aluminum

The differences in exchangeable aluminum
contents were significant at 1% level between the
levels of pH for all soil types(Tables 1 and 2).
Exchangeable aluminum content of the soil
increased in all soil types as rain pH decreased. In
nursery soil, exchangeable aluminum content ranged
from 1.23 to 2.40me/100g in July, and from 1.53 to
2.80me/100g in October. In mixed soil, it ranged
from (.45 to 1.56 in July, and from (.82 to 1.85 in
October. In sandy soil, it ranged from (.23 to 1.40
in July, and from 0.28 to 1.57 in October. These
results were similar to those reported by Cronan and
Schofield'™® and Ulrich ef @l*®, who showed the
increase in exhcangeable aluminum content in soil
by acid rain treatment, and also agreed with the
report that there was a close correlation between
exchangeable aluminum content and soil pH levels
of soil organic matter contents*26264

Aluminum saturation in the soils increased sharply
as rain pH decreased, and its increasing rate was
the highest in sandy soil, followed by mixed and
nursery soils. From these results and those reported
by Reuss*® who found that new equilibrium between
aluminum and calcium in soil solution treated with

acid rain had been reached as soil pH changed, high

aluminum saturation might indicate shortage of such
exchangeable cations as calcium and magnesium.
This seems to be severe in low buffered soils.
Considering that exchangeable aluminum of the
soil increased due to acid rain treatment and forest
soils in Korea were very acidic?®*™ long-term acid
rain might cause injuries to forest vegetation by the
increase in exchangeable aluminum and shortage in

exchangeable calcium and magnesium.

Available Phosphate
In nursery soil, the differences in available
phosphate concentrations were not significant
between the levels of pH. In mixed and sandy soils,
those were significant at 1% level{Tables 1 and 2; .
[n nursery soil, available phosphate concentration of
the soils at pH 3.0 or higher increased after acid
rain treatment than those before treatment. In
mixed and sandy soils, however, these of the soils
at all the levels of pH decreased after acid rain
treatment. Available phosphate concentration of the
s0ils decreased markedly as rain pH decreased.
Increase in available phosphate after acid rain
treatment in nursery soil might be due to high
organic matter and exchangeable calcium content,
being supported other reports that available
phosphate concentration was increased by increasing
concentrations of calcium?-*®  aluminum bound
with humus reacted with phosphate depending little
on pH, and phosphate adsorbed by aluminum in
allophane was dependent markedly on the levels of
pH™®,

Decrease in available phosphate in mixed and
sandy soils after acid rain treatment might be
resulted from relatively small amount of exchangea-
ble calcium in the soil affecting low phosphate
retention and relatively large amount of aluminum
in mixed and sandy soils after acid rain treatment
might be resulted from relatively small amount of
exchangeable calcium in the soil affecting low
phosphate retention and relatively large amount of
aluminum in allophane by low organic matter.
Decrease in the concentration of available phosphate
in the soils with decreasing rain pH levels could be

explained by adsorption of more phosphate by
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soluble Al and Fe!"®%
In highly buffered,

available phosphate concentration might increase by

calcic and organic soils

acid rain. In low buffered soils, however, it might

be reduced markedly by acid rain.

Sulfate

Sulfate concentrations in the soils were signifi-
cantly different between the levels of pH for all soil
types{Table 1 and 2). Sulfate concentrations in the
soils increased after acid rain treatment as rain pH
decreased, and its concentrations were highest in
nursery soil, followed by mixed and sandy soils.
The results were similar to those reported by
Haines'® and Singh et a/°%., who found increased
sulfate concentrations in the tested soil particles,
and to those reported by Oh®” with pot soil. Sulfate
adsorption capacity in the soils was correlated to
exchangeable cation concentration®”, and its
capacity increased as rain pH decreased as well as
soil organic matter and cation exchange capacity of
the soil increased?®5%%®  From these facts, sulfate
adsorption capacity was the highest in nursery soil,
followed by mixed and sandy soils. Sulfate
adsorption by soils is an important property
affecting both the availability of sulfate to plants
and the leaching of sulfate and associated cations.
In the soils affected by acid rain treatment, this
property may determine the impact of acid rain on
cation mobility and leaching®® .

Tke higher sulfate adsorption capacity of the soil
was, the lower sensitivity of the soil to acid rain
was®4®  Nursery soil in this study seems to be the
least sensitive to acid rain treatment among all soil
types. Increase in sulfate concentration in all soil
types with decreasing rain pH levels might be
explained by sulfate adsorption occurred in ion
-exchange reaction between sulfate and hydrexyl
bound Al and Fe of soil colloidal particles 202243,
and sulfate adsorption capacity increased with
increasing exchangeable aluminum concentration in
the soilg™®,

Although sulfate concentration in forest soils was
affected by absorption by plants and reduction by

soil microbes, it seemed to increased soil sulfate

might give detrimental effects on acidic forest soil in

Korea.

Nitrate

Although nitrate concentration in the soil was
significantly different between the levels of rain pH
for all soil types, it had no particular relations with
acid rain treatment({Tables 1 and 2. Nitrate
concentrations in the soils increased in July,
compared with those before treatment, and
decreased in October for all soil types. Increase in
soil nitrate measured in July seems to be resulted
from the nitrate ion in simulated acid rain, being
supported other reports that soil nitrate incrased
with short-term simulated acid rain®**®_ However,
decrease in soil nitrate measured in October
might be caused by nitrate loss due to
environmental factors®®, high phytoavailability and
leaching of nitrate, which has lower anion exchange
capacity than sulfate. Soil nitrate concentration
after acid rain treatment was the highest in nursery
soil, followed by mixed and sandy soils, which
might be resulted from the differences in anion
exchange capacity among soil types. Nitrate
concentrations of the soils at pH 2.0 levels were
higher than those at other pH levels. At other pH
levels, soil nitrate concentrations varied with soil
types and with the levels of pH. Such results seemed
to be due to nitrate concentration in simulated acid
rain, nitrate absorption by plants, variations in
nitrate contents by biochemical reactions and nitrate
leaching from soils®® .

From the results above, nitrate in acid rain might
benefit plant growth. However, the higher nitrate
concentration of acid rain treated, the more
leaching of exchangeable cations from the soil
occurred®¥ . It is suggested that more detailed study
on the relations between nitrate in acid rain and soil

properties is required in the future.
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