• Title/Summary/Keyword: Nuclear and radiation

Search Result 2,727, Processing Time 0.033 seconds

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids

  • Tu, Hong;Yuan, Guoyuan;Zhao, Changsong;Liu, Jun;Li, Feize;Yang, Jijun;Liao, Jiali;Yang, Yuanyou;Liu, Ning
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1322-1332
    • /
    • 2019
  • In this paper, we systematically investigated the influence of some selected ligands on the U-phosphate precipitation induced by soil bacteria. These organics are widely ranging from acetate, lactate, salicylate and citrate to oxalate. The results revealed that uranium could be biomineralized on bacteria as $UO_2HPO_4{\cdot}4H_2O$ or $(UO_2)_3(PO_4)_2{\cdot}4H_2O$. The influence of organic ligands on the biomineralization had clear-cut correlations with its complexation abilities to uranyl. It was clearly found that the U-phosphate biomineralization was affected noticeably by the strong ligands (oxalate and citrate). Further study discovered that when the organic ligands were uncompetitive with biotic $PO_4^{3-}$ for uranyl, the transformation of uranyl species from ${\beta}-UO_2(OH)_2$ colloidal particles to free $UO_2^{2+}$-ligands ions could facilitate the U-phosphate biomineralization. However, when the organic ligands competed with biotic $PO_4^{3-}$ for uranyl, the U-phosphate biomineralization were inhibited. Our results highlight the importance of complex interactions of strong organic ligands with uranyl during the bacterial precipitation of U-P compounds and thus for the mobilization and immobilization of radio-nuclides in the nature.

Analysis of Changed Bio-Signal to Radiation Exposure of Nuclear Medicine Worker (핵의학 종사자의 방사선 피폭에 따른 생체신호 변화 분석)

  • Lee, Hwun-Jae;Lee, Sang-Bock
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • In this paper, We are evaluated about bio-signal between general workers and nuclear medicine workers which is more radiation exposure relatively. In order to reciprocal evaluated two group, we experimented nuclear medicine workers in Chung-Buk National University Hospital at department of nuclear medicine and worker in Chon-Nam National University Hospital at CT room, general radiographic room, medical recording room, receipt room, general office room. Used of experimental Equipments as follows, for a level of radiation measurement by pocket dosimeter which made by Arrow-Tech company, for heart rate and blood pressure measurement by TONOPORT V which made by GE medical systems company, for heat flux and skin temperature and energy expenditure measurement by Armband senseware 2000 which made by Bodymedia company. Result of experiment obtains as follows: 1) Individual radiation exposure is recorded 3.05 uSv at department of nuclear medicine and order as follows CT room, general radiograpic room, medical recording room, receipt room, general office room. Department of nuclear medicine more 1.5 times than other places. 2) Radiation accumulated dose is not related to Heat flux, Skin temperature, Energy expenditure. 3) Blood pressure is recorded equal to nuclear medical workers, general officer, general people about systolic blood pressure and diastolic blood pressure. Compared to blood pressure between nuclear medical works which is more radiation exposure and other workers was not changed. Consequently, more radiation exposed workers at nuclear medicine field doesn't have hazard.

Development of Drugs and Technology for Radiation Theragnosis

  • Jeong, Hwan-Jeong;Lee, Byung Chul;Ahn, Byeong-Cheol;Kang, Keon Wook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.597-607
    • /
    • 2016
  • Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

Comparison between a 13-session and One-time Program on Korean Elementary, Middle and High School Students' Understanding of Nuclear Power

  • Han, Eun Ok;Choi, YoonSeok;Lim, YoungKhi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Background: To help future generations make accurate value judgments about nuclear power generation and radiation, this study will provide an effective education plan suitable for South Korea by applying and analyzing programs for the understanding of nuclear power within the diversely operated programs in the current Korean education system. Materials and Methods: This study analyzed the difference in educational effects by operating a 13-session regular curriculum for one semester and a one-session short-term curriculum from March to July 2016. Results and Discussion: As a result of operating a 13-session model school and a one-time educational program to analyze behavior changes against the traditional learning model, it was found that all elementary, middle and high school students showed higher acceptability of nuclear power in South Korea. The variation was greater for the model school than the short-term program. Conclusion: To prevent future generations from making biased policy decisions stemming from fear regarding nuclear power, it is necessary to bolster their value judgments in policy decisions by acquiring sufficient information about nuclear power generation and radiation through educational programs.

Radiation and Decommissioning Laboratory, an R&D Center for the Back-end Cycle of Nuclear Power Plants

  • Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.419-425
    • /
    • 2023
  • The Radiation and Decommissioning Laboratory of Central Research Institute (CRI) of Korea Hydro and Nuclear Power Co. (KHNP) performs research to technically support the effective management of radiological hazards to avoid risks to civilians, the workers, and the environment from the radiological risks. The laboratory mainly consists of three technical groups: decommissioning and SF technology group, radiation and chemistry group, and radwaste and environment group. The groups carry out various R&D such as decommissioning, spent fuel management, radiation protection, water chemistry management, and radioactive waste management. The laboratory also technically supports the calibration of radiometric instruments as a Korea Laboratory Accreditation Scheme (KOLAS), approval for decommissioning, guidance for radioactive waste management, state-of-the-art technology evaluations, and technology transfer.

Analysis of Computed Tomography Scans for Radiation Safety Management in the Republic of Korea

  • Min Young Lee;Ji Woo Kim;Ga Eun Oh;Geon Woo Son;Kwang Pyo Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.3
    • /
    • pp.141-150
    • /
    • 2024
  • Background: Computed tomography (CT) scans in the Republic of Korea have spiked, reaching approximately 9 million examinations annually in 2017. CT provides significant medical benefits, but radiation exposure remains a concern. This study aims to analyze CT scans in Korea, as a basis study for radiation safety management. Materials and Methods: The raw data of total CT scans was obtained from the Health Insurance Review & Assessment Service and analyzed by CT scan type, patients' age and sex, and medical facility type. CT scans trends were analyzed considering the disease incidence. Results and Discussion: In 2017, CT scans accounted for 8,977,300. Usage per capita was 0.18 in males and 0.17 in females. CT scans increased with age until the 50- to 59-year-old groups, then decreased. CT scans were high in abdominal/pelvic (35%), chest (26%), and head (22%) regions due to higher disease rates. Head CT was most frequently used for infants and children. Abdominal/pelvic, chest, and spine CT were more frequent for older groups. The CT scans in the upper and lower extremities was high in child and juvenile groups. Chest and abdominal/pelvic CTs were higher in males, whereas spine, whole spine, and CT densitometry were higher in females. The proportion of CT scans of tertiary and general hospitals, hospitals, and clinics accounted for ≥80%, 13%, and 5%, respectively. Abdomen/pelvis, chest, and head/neck CTs were mostly conducted in tertiary and general hospitals, spine CT in hospitals and clinics, extremity CT in hospitals, and CT densitometry in clinics. Conclusion: The trend of CT scans varied based on the incidence rate for each patient's sex and age, and serious illness diagnosis by medical facility type. The results of this study provide data and guidance for evaluating the radiation exposure of the Korean population by CT and developing management policies for medical radiation safety.

Effects of the Radiation Benefits and Hazards on Overcoming Recognition of Fukushima Nuclear Disaster Using the Structural Equation Modeling (구조방정식모형을 이용한 방사선 이익성과 위험성이 후쿠시마 원전사고 극복 인식에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this study was to analyze the structural relationship between radiation hazards and radiation benefits effecting on overcoming recognition of Fukushima nuclear disaster (FND) in Japan by using structural equation modeling (SEM). The subjects were 248 undergraduates from one university in Chungbuk province in Korea. From June 1, 2017 to July 30, 2017, we conducted a questionnaire survey on the radiation hazards and radiation benefits and on the overcoming recognition of FND. As a result, it showed that the recognition of radiation hazards has a significant effect on the benefits of radiation, but does not directly affect the overcoming recognition of FND. However, the recognition of radiation benefits has been mediating between radiation hazards perception and the overcoming recognition of FND. Therefore, it can be empirically confirmed that despite the radiation hazards the recognition of overcoming the FND depends on the level of radiation benefits by using the SEM.

Improvement Methods in NPP's Radiation Emergency Plan: An Administrative Approach (행정적 대응을 중심으로 본 원전 방사선비상계획 개선방안)

  • Lee, Yoon-Wook;Yang, He-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.151-154
    • /
    • 2009
  • The Radiation Emergency Plan (REP) can be divided into a technical and an administrative responses. The domestic NPP's REPs are reviewed from the viewpoint of the administrative response and improvement methods are also suggested in this treatise. The fields of the reviews are the composition of the emergency response organizations, the activation criteria of the organizations, the selection of the staffings and the reasonableness of the REP's volume. In addition, the limitations of the current radiation exercises are reviewed and the improvement method of the exercise is presented. It is expected that the suggested recommendations will be helpful in establishing useful REPs and making practical radiation exercises in Korea.