References
- M.I. Boyanov, K.E. Fletcher, M.J. Kwon, et al., Solution and microbial controls on the formation of reduced U(IV) species, Environ. Sci. Technol. 45 (2011 Oct 1) 8336-8344.
- R. Bernier-Latmani, H. Veeramani, E.D. Vecchia, et al., Non-uraninite products of microbial U(VI) reduction, Environ. Sci. Technol. 44 (2010 Dec 15) 9456-9462. https://doi.org/10.1021/es101675a
- R.A. Crane, M. Dickinson, I.C. Popescu, et al., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water, Water Res. 45 (2011 Apr) 2931-2942. https://doi.org/10.1016/j.watres.2011.03.012
- C.S. Zhao, X.L. Li, C.C. Ding, et al., Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp dwc-1 as investigated by FTIR, TEM and XPS, J. Radioanal. Nucl. Chem. 310 (2016 Oct) 165-175. https://doi.org/10.1007/s10967-016-4797-2
- M. Ghasemi, A.R. Keshtkar, R. Dabbagh, et al., Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling, J. Hazard Mater. 189 (2011 May 15) 141-149. https://doi.org/10.1016/j.jhazmat.2011.02.011
- L. Newsome, K. Morris, J.R. Lloyd, The biogeochemistry and bioremediation of uranium and other priority radionuclides, Chem. Geol. 363 (2014 Jan 10) 164-184. https://doi.org/10.1016/j.chemgeo.2013.10.034
- F. Malekzadeh, A. Farazmand, H. Ghafourian, et al., Uranium accumulation by a bacterium isolated from electroplating effluent, World J. Microbiol. Biotechnol. 18 (2002) 295-300. https://doi.org/10.1023/A:1015215718810
- G.W. Strandberg, S.E. Shumate, J.R. Parrott, Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microbiol. 41 (1981) 237-245. https://doi.org/10.1128/AEM.41.1.237-245.1981
- W. Gao, A.J. Francis, Reduction of uranium (VI) to uranium (IV) by Clostridia, Appl. Environ. Microbiol. 74 (2008) 4580-4584. https://doi.org/10.1128/AEM.00239-08
- B. Gu, W.-M. Wu, M.A. Ginder-Vogel, et al., Bioreduction of uranium in a contaminated soil column, Environ. Sci. Technol. 39 (2005) 4841-4847. https://doi.org/10.1021/es050011y
- A. Francis, C. Dodge, Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility, Environ. Sci. Technol. 42 (2008) 8277-8282. https://doi.org/10.1021/es801045m
- X. Liang, S. Hillier, H. Pendlowski, et al., Uranium phosphate biomineralization by fungi, Environ. Microbiol. 17 (2015) 2064-2075. https://doi.org/10.1111/1462-2920.12771
- C.S. Griggs, P.S. Barber, S.P. Kelley, et al., Biomimetic mineralization of uranium by metabolically-inactive shrimp shell, Cryst. Growth Des. 14 (2014 Dec) 6172-6176. https://doi.org/10.1021/cg5015576
- T. Sousa, A.-P. Chung, A. Pereira, et al., Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes, Metall 5 (2013) 390-397. https://doi.org/10.1039/c3mt00052d
- S. Choudhary, P. Sar, Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste, J. Hazard Mater. 186 (2011 Feb 15) 336-343. https://doi.org/10.1016/j.jhazmat.2010.11.004
- S. Sowmya, P.D. Rekha, A.B. Arun, Uranium(VI) bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp YU-SS-SB-29 isolated from a high natural background radiation site, Int. Biodeterior. Biodegrad. 94 (2014 Oct) 134-140. https://doi.org/10.1016/j.ibiod.2014.07.009
- T. Ohnuki, T. Ozaki, T. Yoshida, et al., Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae, Geochem. Cosmochim. Acta 69 (2005) 5307-5316, 2005/11/15. https://doi.org/10.1016/j.gca.2005.06.023
- M.C. Yung, Y. Jiao, Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus, Appl. Environ. Microbiol. 80 (2014) 4795-4804, 2014 August 15. https://doi.org/10.1128/AEM.01050-14
- R. Wufuer, Y. Wei, Q. Lin, et al., Chapter four - uranium bioreduction and biomineralization, in: S. Sariaslani, G.M. Gadd (Eds.), Adv. Appl. Microbiol, vol. 101, Academic Press, 2017, pp. 137-168.
- M.J. Beazley, R.J. Martinez, P.A. Sobecky, et al., Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions, Geomicrobiol. J. 26 (2009) 431-441, 2009/09/24. https://doi.org/10.1080/01490450903060780
- A. Singh, K.-U. Ulrich, D.E. Giammar, Impact of phosphate on U(VI) immobilization in the presence of goethite, Geochem. Cosmochim. Acta 74 (2010) 6324-6343, 2010/11/15. https://doi.org/10.1016/j.gca.2010.08.031
- M.J. Beazley, R.J. Martinez, S.M. Webb, et al., The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils, Geochem. Cosmochim. Acta 75 (2011) 5648-5663, 2011/10/01. https://doi.org/10.1016/j.gca.2011.07.006
- L. Macaskie, R. Empson, A. Cheetham, et al., Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4, Science 257 (1992) 782-784. https://doi.org/10.1126/science.1496397
- K.R. Salome, M.J. Beazley, S.M. Webb, et al., Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils, Geochem. Cosmochim. Acta 197 (2017) 27-42, 2017/01/15. https://doi.org/10.1016/j.gca.2016.10.008
- L.E. Macaskie, C.J. Hewitt, J.A. Shearer, et al., Biomass production for the removal of heavy metals from aqueous solutions at low pH using growth-decoupled cells of a Citrobacter sp, Int. Biodeterior. Biodegrad. 35 (1995) 73-92, 1995/01/01. https://doi.org/10.1016/0964-8305(95)00050-F
- P. Yong, L.E. Macaskie, Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4, J. Appl. Chem. Biotechnol. 63 (1995) 101-108. https://doi.org/10.1002/jctb.280630202
- Z. Zheng, J. Wan, X. Song, et al., Sodium meta-autunite colloids: synthesis, characterization, and stability, Colloids Surf., A 274 (2006) 48-55, 2006/02/15. https://doi.org/10.1016/j.colsurfa.2005.08.032
- M. Markovic, N. Pavkovic, Solubility and equilibrium constants of uranyl(2+) in phosphate solutions, Chemischer Informationsdienst 14 (1983) 978-982.
- C.A. Blake, C.F. Coleman, K.B. Brown, et al., Studies in the carbonate-uranium system, J. Am. Chem. Soc. 78 (1956) 5978-5983, 1956/12/01. https://doi.org/10.1021/ja01604a004
- R.M. Harper, C. Kantar, Uranium A2 - jorgensen, sven erik, in: B.D. Fath (Ed.), Encyclopedia of Ecology, Academic Press, Oxford, 2008, pp. 3662-3665.
- M. Markovic, N. Pavkovic, N.D. Pavkovic, Precipitation of NH4UO2PO4.3H2O - solubility and structural comparison with alkali uranyl(2+) phosphates, J. Res. Natl. Bur. Stand. 93 (1988 Jul-Aug) 557-563. https://doi.org/10.6028/jres.093.148
- G.M. Gadd, M. Fomina, Uranium and fungi, Geomicrobiol. J. 28 (2011) 471-482, 2011/06/01. https://doi.org/10.1080/01490451.2010.508019
- J.M. Tobin, D.G. Cooper, R.J. Neufeld, Influence of anions on metal adsorption by Rhizopus arrhizus biomass, Biotechnol. Bioeng. 30 (1987) 882-886. https://doi.org/10.1002/bit.260300711
- M.E. Treen-Sears, B. Volesky, R.J. Neufeld, Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent, Biotechnol. Bioeng. 26 (1984) 1323-1329. https://doi.org/10.1002/bit.260261109
- R. Ganesh, K.G. Robinson, L. Chu, et al., Reductive precipitation of uranium by Desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal, Water Res. 33 (1999) 3447-3458, 1999/11/01. https://doi.org/10.1016/S0043-1354(99)00024-X
- A.J. Francis, C.J. Dodge, Bioreduction of uranium(VI) complexed with citric acid by clostridia affects its structure and solubility, Environ. Sci. Technol. 42 (2008) 8277-8282, 2008/11/15. https://doi.org/10.1021/es801045m
-
C. Ding, W. Cheng, Z. Jin, et al., Plasma synthesis of
${\beta}$ -cyclodextrin/Al(OH)3 composites as adsorbents for removal of UO22+ from aqueous solutions, J. Mol. Liq. 207 (2015) 224-230. https://doi.org/10.1016/j.molliq.2015.03.044 - T. Lan, C. Ding, J. Liao, et al., Biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2 isolated from soil, Nucl. Sci. Tech. 26 (2015) 35-45.
- X. Li, C. Ding, J. Liao, et al., Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: a macroscopic and spectroscopic study, J. Environ. Sci. 53 (2017) 9-15, 2017/03/01. https://doi.org/10.1016/j.jes.2016.01.030
- H. Tu, T. Lan, G. Yuan, et al., The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2, J. Environ. Radioact. 197 (2019) 23-29, 2019/02/01. https://doi.org/10.1016/j.jenvrad.2018.11.010
- D.L. Parkhurst, C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3: a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Report. Reston, VA, 2013, 6-A43.
- D. Kinniburgh, D.M. Cooper, PhreePlot: Creating Graphical Output with PHREEQC, Centre for Ecology and Hydrology, Wallingford, 2011.
- R. Lundqvist, J.F. Lu, I. Svantesson, et al., Hydrophilic complexes of the actinides. III. Lactates of Am(3+), Eu(3+), U(4+) and UO2(2+), Acta Chem. Scand. 38a (1984) 501-512. https://doi.org/10.3891/acta.chem.scand.38a-0501
- Y.Z. Yousif, F.J.M. Al-Imarah, Spectrophotometric study of the effect of substitution on the thermodynamic stability of the 1.1 complexes of the dioxouranium(II) ion with mono-substituted salicylic acids in aqueous media, Transition Met. Chem. 14 (1989 1989/04/01) 123-126. https://doi.org/10.1007/BF01040605
- J. Havel, J. Soto-Guerrero, P. Lubal, Spectrophotometric study of uranyl-oxalate complexation in solution, Polyhedron 21 (2002) 1411-1420, 2002/06/15. https://doi.org/10.1016/S0277-5387(02)00947-6
- G. Leturcq, S. Costenoble, S. Grandjean (Eds.), Uranyl Oxalate Solubility, Atalante, 2008.
-
E.H. Bailey, J.F.W. Mosselmans, P.F. Schofield, Uranyl acetate speciation in aqueous solutions-an XAS study between
$25^{\circ}C$ and$250^{\circ}C$ , Geochem. Cosmochim. Acta 68 (2004) 1711-1722. https://doi.org/10.1016/j.gca.2003.08.024 - K.S. Rajan, A.E. Martell, Equilibrium studies of uranyl complexes. III. Interaction of uranyl ion with citric acid, Inorg. Chem. 4 (1965) 462-469. https://doi.org/10.1021/ic50026a006
- L. B.I, J. B.E, J. A.P, ChemInform abstract: CRYSTALLOGRAPHIC DATA ON AMMONIUM URANYL PHOSPHATE TRIHYDRATE, Chemischer Informationsdienst 7 (1976).
- N. PavkoviC, M. MarkoviC, Precipitation and identification of uranyl(2+) salts in diphosphoric acid, Radiochim. Acta (1983) 127.
- B. Morosin, Hydrogen uranyl phosphate tetrahydrate, a hydrogen-ion solid electrolyte, Acta Crystallogr. B 34 (1978) 3732-3734. https://doi.org/10.1107/S0567740878011991
- A.J. Locock, P.C. Burns, M.J.M. Duke, et al., Monovalent cations in structures of the meta-autunite group, Can. Mineral. 42 (2004) 973-996. https://doi.org/10.2113/gscanmin.42.4.973
- A. Fitch, M. Cole, The structure of KUO 2 PO 4. 3D 2 O refined from neutron and synchrotron-radiation powder diffraction data, Mater. Res. Bull. 26 (1991) 407-414. https://doi.org/10.1016/0025-5408(91)90055-Q
- F. Weigel, G. Hoffmann, The phosphates and arsenates of hexavalent actinides. Part I. Uranium, J. Less Common Met. 44 (1976) 99-123. https://doi.org/10.1016/0022-5088(76)90121-1
- U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation, Nat. Nanotechnol. 6 (2011) 534, 08/28/online. https://doi.org/10.1038/nnano.2011.145
- D. Gorman-Lewis, P.C. Burns, J.B. Fein, Review of uranyl mineral solubility measurements, J. Chem. Thermodyn. 40 (2008) 335-352, 2008/03/01. https://doi.org/10.1016/j.jct.2007.12.004
- R.A.P. Thomas, L.E. Macaskie, Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution, Environ. Sci. Technol. 30 (1996) 2371-2375, 1996/06/01. https://doi.org/10.1021/es950861l
- M. Paterson-Beedle, J.E. Readman, J.A. Hriljac, et al., Biorecovery of uranium from aqueous solutions at the expense of phytic acid, Hydrometallurgy 104 (2010) 524-528, 2010/10/01. https://doi.org/10.1016/j.hydromet.2010.01.019
- X. Liang, L. Csetenyi, G.M. Gadd, Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates, Appl. Microbiol. Biotechnol. 100 (2016 June 01) 5141-5151. https://doi.org/10.1007/s00253-016-7327-9
- F. Morcillo, M.T. Gonzalez-Mu-noz, T. Reitz, et al., Biosorption and biomineralization of U(VI) by the marine bacterium idiomarina loihiensis MAH1: effect of background electrolyte and pH, PLoS One 9 (2014), e91305. https://doi.org/10.1371/journal.pone.0091305
- C.M. Hansel, S.G. Benner, J. Neiss, et al., Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow, Geochem. Cosmochim. Acta 67 (2003) 2977-2992, 2003/08/15. https://doi.org/10.1016/S0016-7037(03)00276-X
- M. Martinez-Lara, J.A. Barea-Aranda, L.-M. Real, et al., Interaction of aniline and benzidine with layered solids Mn+(UO2XO4) n - z H2O[M = H3O+, Cu2+, VO2+, Fe2+; X = P, As], J. Inclusion Phenom. Mol. Recognit. Chem. 9 (1990) 287-299, 1990/12/01. https://doi.org/10.1007/BF01033308
- R. Pozas-Tormo, L. Moreno-Real, M. Martinez-Lara, et al., Layered metal uranyl phosphates. Retention of divalent ions by amine intercalates of uranyl phosphates, Can. J. Chem. 64 (1986) 30-34, 1986/01/01. https://doi.org/10.1139/v86-007
-
A. Sanding, J. Bruno, The solubility of (UO2)3(PO4)2
${\cdot}$ 4H2O(s) and the formation of U(VI) phosphate complexes: their influence in uranium speciation in natural waters, Geochem. Cosmochim. Acta 56 (1992) 4135-4145, 1992/12/01. https://doi.org/10.1016/0016-7037(92)90256-I -
D.M. Wellman, K.M. Gunderson, J.P. Icenhower, et al., Dissolution kinetics of synthetic and natural meta-autunite minerals, X3-n(n)+ [(UO2)(PO4)]2
${\cdot}$ xH2O, under acidic conditions, Geochem. Geophys. Geosyst. 8 (2007) (n/a-n/a). - T. Ohnuki, N. Kozai, M. Samadfam, et al., The formation of autunite (Ca(UO2) 2(PO4)2nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite, Chem. Geol. 211 (2004) 1-14, 2004/11/08. https://doi.org/10.1016/j.chemgeo.2004.03.004
- M. Wazne, G.P. Korfiatis, X. Meng, Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide, Environ. Sci. Technol. 37 (2003) 3619-3624, 2003/08/01. https://doi.org/10.1021/es034166m
- R.J. Murphy, J.J. Lenhart, B.D. Honeyman, The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter, Colloids Surf., A 157 (1999) 47-62, 1999/10/30. https://doi.org/10.1016/S0927-7757(99)00115-6
- D.D. Schnaars, G. Wu, T.W. Hayton, Reduction of pentavalent uranyl to U(IV) facilitated by oxo functionalization, J. Am. Chem. Soc. 131 (2009) 17532-17533, 2009/12/09. https://doi.org/10.1021/ja906880d
- Y. Suzuki, T. Nankawa, T. Yoshida, et al., Reduction behavior of uranium in the presence of citric acid, Radiochim. Acta (2006) 579.
- T. Ohnuki, N. Kozai, T. Ozaki, et al., Effects of organic acids on biotransformation of acinides. Nuclear energy and the environment, in: ACS Symposium Series, vol. 1046, American Chemical Society, 2010, pp. 333-348.
Cited by
- The effects of Leifsonia sp. on bioavailability and immobilization mechanism of uranium in soil vol.20, pp.3, 2019, https://doi.org/10.1007/s11368-019-02494-1
- Brevibacillus laterosporus ZN5 Induces Different Carbonate Precipitations of Lead in Ammonification and Nitrate Assimilation Processes vol.37, pp.8, 2019, https://doi.org/10.1080/01490451.2020.1774687
- Uranium Biomineralization with Phosphate-Biogeochemical Process and Its Application vol.4, pp.12, 2019, https://doi.org/10.1021/acsearthspacechem.0c00252
- Layers of Uranium Phosphate Nanorods and Nanoplates Encrusted on Fungus Cladosporium sp. Strain F1 Hyphae vol.36, pp.4, 2019, https://doi.org/10.1264/jsme2.me21036
- Influence of Uranium Concentration and pH on U-Phosphate Biomineralization by Caulobacter OR37 vol.55, pp.3, 2019, https://doi.org/10.1021/acs.est.0c05437
- Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization vol.28, pp.18, 2021, https://doi.org/10.1007/s11356-020-11852-3
- Response and Dynamic Change of Microbial Community during Bioremediation of Uranium Tailings by Bacillus sp. vol.11, pp.9, 2021, https://doi.org/10.3390/min11090967