DOI QR코드

DOI QR Code

U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids

  • Tu, Hong (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yuan, Guoyuan (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Zhao, Changsong (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Liu, Jun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Li, Feize (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yang, Jijun (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Liao, Jiali (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yang, Yuanyou (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Liu, Ning (Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
  • Received : 2018.12.22
  • Accepted : 2019.03.05
  • Published : 2019.06.25

Abstract

In this paper, we systematically investigated the influence of some selected ligands on the U-phosphate precipitation induced by soil bacteria. These organics are widely ranging from acetate, lactate, salicylate and citrate to oxalate. The results revealed that uranium could be biomineralized on bacteria as $UO_2HPO_4{\cdot}4H_2O$ or $(UO_2)_3(PO_4)_2{\cdot}4H_2O$. The influence of organic ligands on the biomineralization had clear-cut correlations with its complexation abilities to uranyl. It was clearly found that the U-phosphate biomineralization was affected noticeably by the strong ligands (oxalate and citrate). Further study discovered that when the organic ligands were uncompetitive with biotic $PO_4^{3-}$ for uranyl, the transformation of uranyl species from ${\beta}-UO_2(OH)_2$ colloidal particles to free $UO_2^{2+}$-ligands ions could facilitate the U-phosphate biomineralization. However, when the organic ligands competed with biotic $PO_4^{3-}$ for uranyl, the U-phosphate biomineralization were inhibited. Our results highlight the importance of complex interactions of strong organic ligands with uranyl during the bacterial precipitation of U-P compounds and thus for the mobilization and immobilization of radio-nuclides in the nature.

Keywords

References

  1. M.I. Boyanov, K.E. Fletcher, M.J. Kwon, et al., Solution and microbial controls on the formation of reduced U(IV) species, Environ. Sci. Technol. 45 (2011 Oct 1) 8336-8344.
  2. R. Bernier-Latmani, H. Veeramani, E.D. Vecchia, et al., Non-uraninite products of microbial U(VI) reduction, Environ. Sci. Technol. 44 (2010 Dec 15) 9456-9462. https://doi.org/10.1021/es101675a
  3. R.A. Crane, M. Dickinson, I.C. Popescu, et al., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water, Water Res. 45 (2011 Apr) 2931-2942. https://doi.org/10.1016/j.watres.2011.03.012
  4. C.S. Zhao, X.L. Li, C.C. Ding, et al., Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp dwc-1 as investigated by FTIR, TEM and XPS, J. Radioanal. Nucl. Chem. 310 (2016 Oct) 165-175. https://doi.org/10.1007/s10967-016-4797-2
  5. M. Ghasemi, A.R. Keshtkar, R. Dabbagh, et al., Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling, J. Hazard Mater. 189 (2011 May 15) 141-149. https://doi.org/10.1016/j.jhazmat.2011.02.011
  6. L. Newsome, K. Morris, J.R. Lloyd, The biogeochemistry and bioremediation of uranium and other priority radionuclides, Chem. Geol. 363 (2014 Jan 10) 164-184. https://doi.org/10.1016/j.chemgeo.2013.10.034
  7. F. Malekzadeh, A. Farazmand, H. Ghafourian, et al., Uranium accumulation by a bacterium isolated from electroplating effluent, World J. Microbiol. Biotechnol. 18 (2002) 295-300. https://doi.org/10.1023/A:1015215718810
  8. G.W. Strandberg, S.E. Shumate, J.R. Parrott, Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microbiol. 41 (1981) 237-245. https://doi.org/10.1128/AEM.41.1.237-245.1981
  9. W. Gao, A.J. Francis, Reduction of uranium (VI) to uranium (IV) by Clostridia, Appl. Environ. Microbiol. 74 (2008) 4580-4584. https://doi.org/10.1128/AEM.00239-08
  10. B. Gu, W.-M. Wu, M.A. Ginder-Vogel, et al., Bioreduction of uranium in a contaminated soil column, Environ. Sci. Technol. 39 (2005) 4841-4847. https://doi.org/10.1021/es050011y
  11. A. Francis, C. Dodge, Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility, Environ. Sci. Technol. 42 (2008) 8277-8282. https://doi.org/10.1021/es801045m
  12. X. Liang, S. Hillier, H. Pendlowski, et al., Uranium phosphate biomineralization by fungi, Environ. Microbiol. 17 (2015) 2064-2075. https://doi.org/10.1111/1462-2920.12771
  13. C.S. Griggs, P.S. Barber, S.P. Kelley, et al., Biomimetic mineralization of uranium by metabolically-inactive shrimp shell, Cryst. Growth Des. 14 (2014 Dec) 6172-6176. https://doi.org/10.1021/cg5015576
  14. T. Sousa, A.-P. Chung, A. Pereira, et al., Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes, Metall 5 (2013) 390-397. https://doi.org/10.1039/c3mt00052d
  15. S. Choudhary, P. Sar, Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste, J. Hazard Mater. 186 (2011 Feb 15) 336-343. https://doi.org/10.1016/j.jhazmat.2010.11.004
  16. S. Sowmya, P.D. Rekha, A.B. Arun, Uranium(VI) bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp YU-SS-SB-29 isolated from a high natural background radiation site, Int. Biodeterior. Biodegrad. 94 (2014 Oct) 134-140. https://doi.org/10.1016/j.ibiod.2014.07.009
  17. T. Ohnuki, T. Ozaki, T. Yoshida, et al., Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae, Geochem. Cosmochim. Acta 69 (2005) 5307-5316, 2005/11/15. https://doi.org/10.1016/j.gca.2005.06.023
  18. M.C. Yung, Y. Jiao, Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus, Appl. Environ. Microbiol. 80 (2014) 4795-4804, 2014 August 15. https://doi.org/10.1128/AEM.01050-14
  19. R. Wufuer, Y. Wei, Q. Lin, et al., Chapter four - uranium bioreduction and biomineralization, in: S. Sariaslani, G.M. Gadd (Eds.), Adv. Appl. Microbiol, vol. 101, Academic Press, 2017, pp. 137-168.
  20. M.J. Beazley, R.J. Martinez, P.A. Sobecky, et al., Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions, Geomicrobiol. J. 26 (2009) 431-441, 2009/09/24. https://doi.org/10.1080/01490450903060780
  21. A. Singh, K.-U. Ulrich, D.E. Giammar, Impact of phosphate on U(VI) immobilization in the presence of goethite, Geochem. Cosmochim. Acta 74 (2010) 6324-6343, 2010/11/15. https://doi.org/10.1016/j.gca.2010.08.031
  22. M.J. Beazley, R.J. Martinez, S.M. Webb, et al., The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils, Geochem. Cosmochim. Acta 75 (2011) 5648-5663, 2011/10/01. https://doi.org/10.1016/j.gca.2011.07.006
  23. L. Macaskie, R. Empson, A. Cheetham, et al., Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4, Science 257 (1992) 782-784. https://doi.org/10.1126/science.1496397
  24. K.R. Salome, M.J. Beazley, S.M. Webb, et al., Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils, Geochem. Cosmochim. Acta 197 (2017) 27-42, 2017/01/15. https://doi.org/10.1016/j.gca.2016.10.008
  25. L.E. Macaskie, C.J. Hewitt, J.A. Shearer, et al., Biomass production for the removal of heavy metals from aqueous solutions at low pH using growth-decoupled cells of a Citrobacter sp, Int. Biodeterior. Biodegrad. 35 (1995) 73-92, 1995/01/01. https://doi.org/10.1016/0964-8305(95)00050-F
  26. P. Yong, L.E. Macaskie, Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4, J. Appl. Chem. Biotechnol. 63 (1995) 101-108. https://doi.org/10.1002/jctb.280630202
  27. Z. Zheng, J. Wan, X. Song, et al., Sodium meta-autunite colloids: synthesis, characterization, and stability, Colloids Surf., A 274 (2006) 48-55, 2006/02/15. https://doi.org/10.1016/j.colsurfa.2005.08.032
  28. M. Markovic, N. Pavkovic, Solubility and equilibrium constants of uranyl(2+) in phosphate solutions, Chemischer Informationsdienst 14 (1983) 978-982.
  29. C.A. Blake, C.F. Coleman, K.B. Brown, et al., Studies in the carbonate-uranium system, J. Am. Chem. Soc. 78 (1956) 5978-5983, 1956/12/01. https://doi.org/10.1021/ja01604a004
  30. R.M. Harper, C. Kantar, Uranium A2 - jorgensen, sven erik, in: B.D. Fath (Ed.), Encyclopedia of Ecology, Academic Press, Oxford, 2008, pp. 3662-3665.
  31. M. Markovic, N. Pavkovic, N.D. Pavkovic, Precipitation of NH4UO2PO4.3H2O - solubility and structural comparison with alkali uranyl(2+) phosphates, J. Res. Natl. Bur. Stand. 93 (1988 Jul-Aug) 557-563. https://doi.org/10.6028/jres.093.148
  32. G.M. Gadd, M. Fomina, Uranium and fungi, Geomicrobiol. J. 28 (2011) 471-482, 2011/06/01. https://doi.org/10.1080/01490451.2010.508019
  33. J.M. Tobin, D.G. Cooper, R.J. Neufeld, Influence of anions on metal adsorption by Rhizopus arrhizus biomass, Biotechnol. Bioeng. 30 (1987) 882-886. https://doi.org/10.1002/bit.260300711
  34. M.E. Treen-Sears, B. Volesky, R.J. Neufeld, Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent, Biotechnol. Bioeng. 26 (1984) 1323-1329. https://doi.org/10.1002/bit.260261109
  35. R. Ganesh, K.G. Robinson, L. Chu, et al., Reductive precipitation of uranium by Desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal, Water Res. 33 (1999) 3447-3458, 1999/11/01. https://doi.org/10.1016/S0043-1354(99)00024-X
  36. A.J. Francis, C.J. Dodge, Bioreduction of uranium(VI) complexed with citric acid by clostridia affects its structure and solubility, Environ. Sci. Technol. 42 (2008) 8277-8282, 2008/11/15. https://doi.org/10.1021/es801045m
  37. C. Ding, W. Cheng, Z. Jin, et al., Plasma synthesis of ${\beta}$-cyclodextrin/Al(OH)3 composites as adsorbents for removal of UO22+ from aqueous solutions, J. Mol. Liq. 207 (2015) 224-230. https://doi.org/10.1016/j.molliq.2015.03.044
  38. T. Lan, C. Ding, J. Liao, et al., Biosorption behavior and mechanism of thorium on Bacillus sp. dwc-2 isolated from soil, Nucl. Sci. Tech. 26 (2015) 35-45.
  39. X. Li, C. Ding, J. Liao, et al., Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: a macroscopic and spectroscopic study, J. Environ. Sci. 53 (2017) 9-15, 2017/03/01. https://doi.org/10.1016/j.jes.2016.01.030
  40. H. Tu, T. Lan, G. Yuan, et al., The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2, J. Environ. Radioact. 197 (2019) 23-29, 2019/02/01. https://doi.org/10.1016/j.jenvrad.2018.11.010
  41. D.L. Parkhurst, C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3: a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Report. Reston, VA, 2013, 6-A43.
  42. D. Kinniburgh, D.M. Cooper, PhreePlot: Creating Graphical Output with PHREEQC, Centre for Ecology and Hydrology, Wallingford, 2011.
  43. R. Lundqvist, J.F. Lu, I. Svantesson, et al., Hydrophilic complexes of the actinides. III. Lactates of Am(3+), Eu(3+), U(4+) and UO2(2+), Acta Chem. Scand. 38a (1984) 501-512. https://doi.org/10.3891/acta.chem.scand.38a-0501
  44. Y.Z. Yousif, F.J.M. Al-Imarah, Spectrophotometric study of the effect of substitution on the thermodynamic stability of the 1.1 complexes of the dioxouranium(II) ion with mono-substituted salicylic acids in aqueous media, Transition Met. Chem. 14 (1989 1989/04/01) 123-126. https://doi.org/10.1007/BF01040605
  45. J. Havel, J. Soto-Guerrero, P. Lubal, Spectrophotometric study of uranyl-oxalate complexation in solution, Polyhedron 21 (2002) 1411-1420, 2002/06/15. https://doi.org/10.1016/S0277-5387(02)00947-6
  46. G. Leturcq, S. Costenoble, S. Grandjean (Eds.), Uranyl Oxalate Solubility, Atalante, 2008.
  47. E.H. Bailey, J.F.W. Mosselmans, P.F. Schofield, Uranyl acetate speciation in aqueous solutions-an XAS study between $25^{\circ}C$ and $250^{\circ}C$, Geochem. Cosmochim. Acta 68 (2004) 1711-1722. https://doi.org/10.1016/j.gca.2003.08.024
  48. K.S. Rajan, A.E. Martell, Equilibrium studies of uranyl complexes. III. Interaction of uranyl ion with citric acid, Inorg. Chem. 4 (1965) 462-469. https://doi.org/10.1021/ic50026a006
  49. L. B.I, J. B.E, J. A.P, ChemInform abstract: CRYSTALLOGRAPHIC DATA ON AMMONIUM URANYL PHOSPHATE TRIHYDRATE, Chemischer Informationsdienst 7 (1976).
  50. N. PavkoviC, M. MarkoviC, Precipitation and identification of uranyl(2+) salts in diphosphoric acid, Radiochim. Acta (1983) 127.
  51. B. Morosin, Hydrogen uranyl phosphate tetrahydrate, a hydrogen-ion solid electrolyte, Acta Crystallogr. B 34 (1978) 3732-3734. https://doi.org/10.1107/S0567740878011991
  52. A.J. Locock, P.C. Burns, M.J.M. Duke, et al., Monovalent cations in structures of the meta-autunite group, Can. Mineral. 42 (2004) 973-996. https://doi.org/10.2113/gscanmin.42.4.973
  53. A. Fitch, M. Cole, The structure of KUO 2 PO 4. 3D 2 O refined from neutron and synchrotron-radiation powder diffraction data, Mater. Res. Bull. 26 (1991) 407-414. https://doi.org/10.1016/0025-5408(91)90055-Q
  54. F. Weigel, G. Hoffmann, The phosphates and arsenates of hexavalent actinides. Part I. Uranium, J. Less Common Met. 44 (1976) 99-123. https://doi.org/10.1016/0022-5088(76)90121-1
  55. U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation, Nat. Nanotechnol. 6 (2011) 534, 08/28/online. https://doi.org/10.1038/nnano.2011.145
  56. D. Gorman-Lewis, P.C. Burns, J.B. Fein, Review of uranyl mineral solubility measurements, J. Chem. Thermodyn. 40 (2008) 335-352, 2008/03/01. https://doi.org/10.1016/j.jct.2007.12.004
  57. R.A.P. Thomas, L.E. Macaskie, Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution, Environ. Sci. Technol. 30 (1996) 2371-2375, 1996/06/01. https://doi.org/10.1021/es950861l
  58. M. Paterson-Beedle, J.E. Readman, J.A. Hriljac, et al., Biorecovery of uranium from aqueous solutions at the expense of phytic acid, Hydrometallurgy 104 (2010) 524-528, 2010/10/01. https://doi.org/10.1016/j.hydromet.2010.01.019
  59. X. Liang, L. Csetenyi, G.M. Gadd, Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates, Appl. Microbiol. Biotechnol. 100 (2016 June 01) 5141-5151. https://doi.org/10.1007/s00253-016-7327-9
  60. F. Morcillo, M.T. Gonzalez-Mu-noz, T. Reitz, et al., Biosorption and biomineralization of U(VI) by the marine bacterium idiomarina loihiensis MAH1: effect of background electrolyte and pH, PLoS One 9 (2014), e91305. https://doi.org/10.1371/journal.pone.0091305
  61. C.M. Hansel, S.G. Benner, J. Neiss, et al., Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow, Geochem. Cosmochim. Acta 67 (2003) 2977-2992, 2003/08/15. https://doi.org/10.1016/S0016-7037(03)00276-X
  62. M. Martinez-Lara, J.A. Barea-Aranda, L.-M. Real, et al., Interaction of aniline and benzidine with layered solids Mn+(UO2XO4) n - z H2O[M = H3O+, Cu2+, VO2+, Fe2+; X = P, As], J. Inclusion Phenom. Mol. Recognit. Chem. 9 (1990) 287-299, 1990/12/01. https://doi.org/10.1007/BF01033308
  63. R. Pozas-Tormo, L. Moreno-Real, M. Martinez-Lara, et al., Layered metal uranyl phosphates. Retention of divalent ions by amine intercalates of uranyl phosphates, Can. J. Chem. 64 (1986) 30-34, 1986/01/01. https://doi.org/10.1139/v86-007
  64. A. Sanding, J. Bruno, The solubility of (UO2)3(PO4)2 ${\cdot}$ 4H2O(s) and the formation of U(VI) phosphate complexes: their influence in uranium speciation in natural waters, Geochem. Cosmochim. Acta 56 (1992) 4135-4145, 1992/12/01. https://doi.org/10.1016/0016-7037(92)90256-I
  65. D.M. Wellman, K.M. Gunderson, J.P. Icenhower, et al., Dissolution kinetics of synthetic and natural meta-autunite minerals, X3-n(n)+ [(UO2)(PO4)]2 ${\cdot}$ xH2O, under acidic conditions, Geochem. Geophys. Geosyst. 8 (2007) (n/a-n/a).
  66. T. Ohnuki, N. Kozai, M. Samadfam, et al., The formation of autunite (Ca(UO2) 2(PO4)2nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite, Chem. Geol. 211 (2004) 1-14, 2004/11/08. https://doi.org/10.1016/j.chemgeo.2004.03.004
  67. M. Wazne, G.P. Korfiatis, X. Meng, Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide, Environ. Sci. Technol. 37 (2003) 3619-3624, 2003/08/01. https://doi.org/10.1021/es034166m
  68. R.J. Murphy, J.J. Lenhart, B.D. Honeyman, The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter, Colloids Surf., A 157 (1999) 47-62, 1999/10/30. https://doi.org/10.1016/S0927-7757(99)00115-6
  69. D.D. Schnaars, G. Wu, T.W. Hayton, Reduction of pentavalent uranyl to U(IV) facilitated by oxo functionalization, J. Am. Chem. Soc. 131 (2009) 17532-17533, 2009/12/09. https://doi.org/10.1021/ja906880d
  70. Y. Suzuki, T. Nankawa, T. Yoshida, et al., Reduction behavior of uranium in the presence of citric acid, Radiochim. Acta (2006) 579.
  71. T. Ohnuki, N. Kozai, T. Ozaki, et al., Effects of organic acids on biotransformation of acinides. Nuclear energy and the environment, in: ACS Symposium Series, vol. 1046, American Chemical Society, 2010, pp. 333-348.

Cited by

  1. The effects of Leifsonia sp. on bioavailability and immobilization mechanism of uranium in soil vol.20, pp.3, 2019, https://doi.org/10.1007/s11368-019-02494-1
  2. Brevibacillus laterosporus ZN5 Induces Different Carbonate Precipitations of Lead in Ammonification and Nitrate Assimilation Processes vol.37, pp.8, 2019, https://doi.org/10.1080/01490451.2020.1774687
  3. Uranium Biomineralization with Phosphate-Biogeochemical Process and Its Application vol.4, pp.12, 2019, https://doi.org/10.1021/acsearthspacechem.0c00252
  4. Layers of Uranium Phosphate Nanorods and Nanoplates Encrusted on Fungus Cladosporium sp. Strain F1 Hyphae vol.36, pp.4, 2019, https://doi.org/10.1264/jsme2.me21036
  5. Influence of Uranium Concentration and pH on U-Phosphate Biomineralization by Caulobacter OR37 vol.55, pp.3, 2019, https://doi.org/10.1021/acs.est.0c05437
  6. Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization vol.28, pp.18, 2021, https://doi.org/10.1007/s11356-020-11852-3
  7. Response and Dynamic Change of Microbial Community during Bioremediation of Uranium Tailings by Bacillus sp. vol.11, pp.9, 2021, https://doi.org/10.3390/min11090967