References
- E.P. Krenning, W.H. Bakker, W.A. Breeman, J.W. Koper, P.P. Kooij, L. Ausema, J.S. Lameris, J.C. Reubi, S.W. Lamberts, Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin, Lancet 1 (1989) 242-244.
- V. Rufini, M.L. Calcagni, R.P. Baum, Imaging of neuroendocrine tumors, Semin. Nucl. Med. 36 (2006) 228-247. https://doi.org/10.1053/j.semnuclmed.2006.03.007
- C. Decristoforo, S.J. Mather, Preparation, 99mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3]octreotide, Bioconjug. Chem. 10 (1999) 431-438. https://doi.org/10.1021/bc980121c
- S. Angeletti, V.D. Corleto, O. Schillaci, M. Marignani, B. Annibale, A. Moretti, G. Silecchia, F. Scopinaro, N. Basso, C. Bordi, G. Delle Fave, Use of the somatostatin analogue octreotide to localise and manage somatostatin-producing tumours, Gut 42 (1998) 792-794. https://doi.org/10.1136/gut.42.6.792
- N. Leners, F. Jamar, R. Fiasse, A. Ferrant, S. Pauwels, Indium-111-pentetreotide uptake in endocrine tumors and lymphoma, J. Nucl. Med. 37 (1996) 916-922.
- V. Prasad, R.P. Baum, Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions, Q. J. Nucl. Med. Mol. Imaging 54 (2010) 61-67.
- D.J. Kwekkeboom, J.J. Teunissen, W.H. Bakker, P.P. Kooij, W.W. de Herder, R.A. Feelders, C.H. van Eijck, J.P. Esser, B.L. Kam, E.P. Krenning, Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors, J. Clin. Oncol. 23 (2005) 2754-2762. https://doi.org/10.1200/JCO.2005.08.066
- G.A. Kaltsas, D. Papadogias, P. Makras, A.B. Grossman, Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues, Endocr. Relat. Cancer 12 (2005) 683-699. https://doi.org/10.1677/erc.1.01116
- S.M. Bison, M.W. Konijnenberg, M. Melis, S.E. Pool, M.R. Bernsen, J.J. Teunissen, D.J. Kwekkeboom, M. de Jong, Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments, Clin. Transl. Imaging 2 (2014) 55-66. https://doi.org/10.1007/s40336-014-0054-2
- F. Graf, J. Fahrer, S. Maus, A. Morgenstern, F. Bruchertseifer, S. Venkatachalam, C. Fottner, M.M. Weber, J. Huelsenbeck, M. Schreckenberger, B. Kaina, M. Miederer, DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy, PLoS One 9 (2014) e88239. https://doi.org/10.1371/journal.pone.0088239
- J.C. Reubi, Peptide receptors as molecular targets for cancer diagnosis and therapy, Endocr. Rev. 24 (2003) 389-427. https://doi.org/10.1210/er.2002-0007
- A. Dimitrakopoulou-Strauss, P. Hohenberger, U. Haberkorn, H.R. Macke, M. Eisenhut, L.G. Strauss, 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparison with 18F-FDG, J. Nucl. Med. 48 (2007) 1245-1250. https://doi.org/10.2967/jnumed.106.038091
- A. Dimitrakopoulou-Strauss, M. Seiz, J. Tuettenberg, K. Schmieder, M. Eisenhut, U. Haberkorn, L.G. Strauss, Pharmacokinetic studies of (6)(8)Ga-labeled Bombesin ((6)(8) Ga-BZH(3)) and F-18 FDG PET in patients with recurrent gliomas and comparison to grading: preliminary results, Clin. Nucl. Med. 36 (2011) 101-108. https://doi.org/10.1097/RLU.0b013e318203bb24
- E. Kahkonen, I. Jambor, J. Kemppainen, K. Lehtio, T.J. Gronroos, A. Kuisma, P. Luoto, H.J. Sipila, T. Tolvanen, K. Alanen, J. Silen, M. Kallajoki, A. Roivainen, N. Schafer, R. Schibli, M. Dragic, A. Johayem, R. Valencia, S. Borkowski, H. Minn, In vivo imaging of prostate cancer using [68Ga]- labeled bombesin analog BAY86-7548, Clin. Cancer Res. 19(2013) 5434-5443. https://doi.org/10.1158/1078-0432.CCR-12-3490
- B.R. Sah, I.A. Burger, R. Schibli, M. Friebe, L. Dinkelborg, K. Graham, S. Borkowski, C. Bacher-Stier, R. Valencia, A. Srinivasan, T.F. Hany, L. Mu, P.J. Wild, N.G. Schaefer, Dosimetry and first clinical evaluation of the new 18Fradiolabeled bombesin analogue BAY 864367 in patients with prostate cancer, J. Nucl. Med. 56 (2015) 372-378. https://doi.org/10.2967/jnumed.114.147116
- K.L. Chatalic, G.M. Franssen, W.M. van Weerden, W.J. McBride, P. Laverman, E. de Blois, B. Hajjaj, L. Brunel, D.M. Goldenberg, J.A. Fehrentz, J. Martinez, O.C. Boerman, M. de Jong, Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer, J. Nucl. Med. 55 (2014) 2050-2056. https://doi.org/10.2967/jnumed.114.141143
-
J.C. Lim, S.H. Dho, E.H. Cho, S.Y. Lee, S.Y. Kim, S.H. Jung, J.C. Kim, Development of a
$^{68}Ga$ -labeled bombesin analog for gastrin-releasing peptide receptor-expressing prostate tumor imaging, Adv. Tech. Biol. Med. 3 (2015) 135. - P.A. Schubiger, L. Allemann-Tannahill, A. Egli, R. Schibli, R. Alberto, N. Carrel-Remy, M. Willmann, P. Blauenstein, D. Tourwe, Catabolism of neurotensins. Implications for the design of radiolabeling strategies of peptides, Q. J. Nucl. Med. 43 (1999) 155-158.
- F. Buchegger, F. Bonvin, M. Kosinski, A.O. Schaffland, J. Prior, J.C. Reubi, P. Blauenstein, D. Tourwe, E. Garcia Garayoa, A. Bischof Delaloye, Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients, J. Nucl. Med. 44 (2003) 1649-1654.
- E. Garcia-Garayoa, P. Blauenstein, A. Blanc, V. Maes, D. Tourwe, P.A. Schubiger, A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours, Eur. J. Nucl. Med. Mol. Imaging 36 (2009) 37-47. https://doi.org/10.1007/s00259-008-0894-y
- B. Brans, O. Linden, F. Giammarile, J. Tennvall, C. Punt, Clinical applications of newer radionuclide therapies, Eur. J. Cancer 42 (2006) 994-1003. https://doi.org/10.1016/j.ejca.2005.12.020
- A.C. Froberg, M. de Jong, B.A. Nock, W.A. Breeman, J.L. Erion, T. Maina, M. Verdijsseldonck, W.W. de Herder, A. van der Lugt, P.P. Kooij, E.P. Krenning, Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma, Eur, J. Nucl. Med. Mol. Imaging 36 (2009) 1265-1272. https://doi.org/10.1007/s00259-009-1098-9
- D. Wild, M. Behe, A. Wicki, D. Storch, B. Waser, M. Gotthardt, B. Keil, G. Christofori, J.C. Reubi, H.R. Macke, [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting, J. Nucl. Med. 47 (2006) 2025-2033.
- D. Wild, H. Macke, E. Christ, B. Gloor, J.C. Reubi, Glucagonlike peptide 1-receptor scans to localize occult insulinomas, N. Engl. J. Med. 359 (2008) 766-768. https://doi.org/10.1056/NEJMc0802045
- E. Christ, D. Wild, F. Forrer, M. Brandle, R. Sahli, T. Clerici, B. Gloor, F. Martius, H. Maecke, J.C. Reubi, Glucagon-like peptide-1 receptor imaging for localization of insulinomas, J. Clin. Endocrinol. Metab. 94 (2009) 4398-4405. https://doi.org/10.1210/jc.2009-1082
- R. Haubner, W.A. Weber, A.J. Beer, E. Vabuliene, D. Reim, M. Sarbia, K.F. Becker, M. Goebel, R. Hein, H.J. Wester, H. Kessler, M. Schwaiger, Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD, PLoS Med. 2 (2005) e70. https://doi.org/10.1371/journal.pmed.0020070
- M. Janssen, C. Frielink, I. Dijkgraaf, W. Oyen, D.S. Edwards, S. Liu, M. Rajopadhye, L. Massuger, F. Corstens, O. Boerman, Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation, Cancer Biother. Radiopharm. 19 (2004) 399-404. https://doi.org/10.1089/cbr.2004.19.399
-
B.C. Lee, B.S. Moon, J.S. Kim, J.H. Jung, H.S. Park, J.A. Katzenellenbogen, S.E. Kim, Synthesis and biological evaluation of RGD peptides with the
$^{99m}Tc/^{188}Re$ chelated iminodiacetate core: highly enhanced uptake and excretion kinetics of theragnosiss against tumor angiogenesis, RSC Adv. 3 (2013) 782-792. https://doi.org/10.1039/C2RA22460G - J.S. Yoo, J. Lee, J.H. Jung, B.S. Moon, S. Kim, B.C. Lee, S.E. Kim, SPECT/CT imaging of high-risk atherosclerotic plaques using integrin-binding RGD dimer peptides, Sci. Rep. 5 (2015) 11752. https://doi.org/10.1038/srep11752
- A. Capello, E.P. Krenning, B.F. Bernard, W.A. Breeman, J.L. Erion, M. de Jong, Anticancer activity of targeted proapoptotic peptides, J. Nucl. Med. 47 (2006) 122-129.
- Z.B. Li, Z. Wu, K. Chen, E.K. Ryu, X. Chen, 18F-labeled BBNRGD heterodimer for prostate cancer imaging, J. Nucl. Med. 49 (2008) 453-461. https://doi.org/10.2967/jnumed.107.048009
- P.M. van Hagen, W.A. Breeman, J.C. Reubi, P.T. Postema, P.J. van den Anker-Lugtenburg, D.J. Kwekkeboom, J. Laissue, B. Waser, S.W. Lamberts, T.J. Visser, E.P. Krenning, Visualization of the thymus by substance P receptor scintigraphy in man, Eur. J. Nucl. Med. 23 (1996) 1508-1513. https://doi.org/10.1007/BF01254476
- S. Kneifel, D. Cordier, S. Good, M.C. Ionescu, A. Ghaffari, S. Hofer, M. Kretzschmar, M. Tolnay, C. Apostolidis, B. Waser, M. Arnold, J. Mueller-Brand, H.R. Maecke, J.C. Reubi, A. Merlo, Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acidesubstance P, Clin. Cancer Res. 12 (2006) 3843-3850. https://doi.org/10.1158/1078-0432.CCR-05-2820
- D. Cordier, F. Forrer, S. Kneifel, M. Sailer, L. Mariani, H. Macke, J. Muller-Brand, A. Merlo, Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGAsubstance Pdresults from a phase I study, J. Neurooncol. 100 (2010) 129-136. https://doi.org/10.1007/s11060-010-0153-5
- P. Theodore Jr., All about Albumin, Elsevier, Amsterdam, 1995.
- K.M. Sand, M. Bern, J. Nilsen, H.T. Noordzij, I. Sandlie, J.T. Andersen, Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics, Front. Immunol. 5 (2014) 682.
- M.E. Baker, Albumin, steroid hormones and the origin of vertebrates, J. Endocrinol. 175 (2002) 121-127. https://doi.org/10.1677/joe.0.1750121
- Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res. 46 (1986) 6387-6392.
- T.A. Waldmann, Gastrointestinal protein loss demonstrated by Cr-51-labelled albumin, Lancet 2 (1961) 121-123.
- C.R. Divgi, N.M. Lisann, S.D. Yeh, R.S. Benua, Technetium-99m albumin scintigraphy in the diagnosis of protein-losing enteropathy, J. Nucl. Med. 27 (1986) 1710-1712.
- D.W. Nyman, K.J. Campbell, E. Hersh, K. Long, K. Richardson, V. Trieu, N. Desai, M.J. Hawkins, D.D. Von Hoff, Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies, J. Clin. Oncol. 23 (2005) 7785-7793. https://doi.org/10.1200/JCO.2004.00.6148
- A.M. Merlot, D.S. Kalinowski, D.R. Richardson, Unraveling the mysteries of serum albumin-more than just a serum protein, Front. Physiol. 5 (2014) 299.
- F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J. Control. Rel. 132 (2008) 171-183. https://doi.org/10.1016/j.jconrel.2008.05.010
- C. Boyer, M.R. Whittaker, V. Bulmus, J. Liu, T.P. Davis, The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications, NPG Asia Mater. 2 (2010) 23-30. https://doi.org/10.1038/asiamat.2010.6
- M. Di Marco, C. Sadun, M. Port, I. Guilbert, P. Couvreur, C. Dubernet, Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents, Int. J. Nanomed. 2 (2007) 609-622.
- J.D. Bronzino, D.R. Peterson, Biomedical signals, imaging, and informatics, in: C. Yuan, W.S. Kerwin, G. Canton, J. Wang, H. Chen, N. Balu (Eds.), Magnetic Resonance Imaging of Atherosclerosis, fourth ed., CRC Press, Boca Raton (FL), 2015, pp. 16-33.
- K.J. Widder, R.M. Morris, G. Poore, D.P. Howard Jr., A.E. Senyei, Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin, Proc. Natl. Acad. Sci. U. S. A. 78 (1981) 579-581. https://doi.org/10.1073/pnas.78.1.579
- X. Yang, J.J. Grailer, I.J. Rowland, A. Javadi, S.A. Hurley, V.Z. Matson, D.A. Steeber, S. Gong, Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging, ACS Nano 4 (2010) 6805-6817. https://doi.org/10.1021/nn101670k
- J.R. Hwu, Y.S. Lin, T. Josephrajan, M.H. Hsu, F.Y. Cheng, C.S. Yeh, W.C. Su, D.B. Shieh, Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles, J. Am. Chem. Soc. 131 (2009) 66-68. https://doi.org/10.1021/ja804947u
- T. Lammers, F. Kiessling, W.E. Hennink, G. Storm, Nanotheranostics and image-guided drug delivery: current concepts and future directions, Mol. Pharm. 7 (2010) 1899-1912. https://doi.org/10.1021/mp100228v
- C.H. Fan, C.Y. Ting, H.J. Lin, C.H. Wang, H.L. Liu, T.C. Yen, C.K. Yeh, SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery, Biomaterials 34 (2013) 3706-3715. https://doi.org/10.1016/j.biomaterials.2013.01.099
- C.M. Lee, S.J. Cheong, E.M. Kim, S.T. Lim, Y.Y. Jeong, M.H. Sohn, H.J. Jeong, Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform, J. Nucl. Med. 54 (2013) 1974-1980. https://doi.org/10.2967/jnumed.113.122267
- H. Zhou, X. Hou, Y. Liu, T. Zhao, Q. Shang, J. Tang, J. Liu, Y. Wang, Q. Wu, Z. Luo, H. Wang, C. Chen, Superstable magnetic nanoparticles in conjugation with near-infrared dye as a multimodal theranostic platform, ACS Appl. Mater. Interfaces 8 (2016) 4424-4433. https://doi.org/10.1021/acsami.5b11308
- C.M. Lee, D. Jang, J. Kim, S.J. Cheong, E.M. Kim, M.H. Jeong, S.H. Kim, D.W. Kim, S.T. Lim, M.H. Sohn, Y.Y. Jeong, H.J. Jeong, Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo, Bioconjug. Chem. 22 (2011) 186-192. https://doi.org/10.1021/bc100241a
- G. Frens, Controlled nucleation for the regulation of particle size in monodisperse gold suspensions, Nat. Phys. Sci. 241 (1972) 20-22.
- S. Hwang, J. Nam, S. Jung, J. Song, H. Doh, S. Kim, Gold nanoparticle-mediated photothermal therapy: current status and future perspective, Nanomedicine (Lond) 9 (2014) 2003-2022. https://doi.org/10.2217/nnm.14.147
- X. Huang, M.A. El-Sayeda, Plasmonic photo-thermal therapy (PPTT), Alexandria J. Med. 47 (2011) 1-9. https://doi.org/10.1016/j.ajme.2011.01.001
- Z. Li, H. Huang, S. Tang, Y. Li, X.F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, P.K. Chu, Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy, Biomaterials 74 (2016) 144-154. https://doi.org/10.1016/j.biomaterials.2015.09.038
- J.G. Piao, L. Wang, F. Gao, Y.Z. You, Y. Xiong, L. Yang, Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy, ACS Nano 8 (2014) 10414-10425. https://doi.org/10.1021/nn503779d
- A.K. Rengan, A.B. Bukhari, A. Pradhan, R. Malhotra, R. Banerjee, R. Srivastava, A. De, In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer, Nano Lett. 15 (2015) 842-848. https://doi.org/10.1021/nl5045378
- Q.K. Ng, C.I. Olariu, M. Yaffee, V.F. Taelman, N. Marincek, T. Krause, L. Meier, M.A. Walter, Indium-111 labeled gold nanoparticles for in-vivo molecular targeting, Biomaterials 35 (2014) 7050-7057. https://doi.org/10.1016/j.biomaterials.2014.04.098
- J. Zhu, J. Chin, C. Wangler, B. Wangler, R.B. Lennox, R. Schirrmacher, Rapid (18)F-labeling and loading of PEGylated gold nanoparticles for in vivo applications, Bioconjug. Chem. 25 (2014) 1143-1150. https://doi.org/10.1021/bc5001593
- A. Vilchis-Juarez, G. Ferro-Flores, C. Santos-Cuevas, E. Morales-Avila, B. Ocampo-Garcia, L. Diaz-Nieto, M. Luna-Gutierrez, N. Jimenez-Mancilla, M. Pedraza-Lopez, L. Gomez-Olivan, Molecular targeting radiotherapy with cyclo- RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice, J. Biomed. Nanotechnol. 10 (2014) 393-404. https://doi.org/10.1166/jbn.2014.1721
- C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706-8715. https://doi.org/10.1021/ja00072a025
- W.K. Chung Leland, W.B. Isaacs, J.W. Simons, Prostate cancer: biology, genetics, and the new therapeutics, in: X. Gao, Y. Xing, W.K. Chung Leland, S. Nie (Eds.), Quantum Dot Nanotechnology for Prostate cancer Research, Human Press, New Jersey, 2007, p. 231.
- R. Savla, O. Taratula, O. Garbuzenko, T. Minko, Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer, J. Control. Rel. 153 (2011) 16-22. https://doi.org/10.1016/j.jconrel.2011.02.015
- H.S. Han, E. Niemeyer, Y. Huang, W.S. Kamoun, J.D. Martin, J. Bhaumik, Y. Chen, S. Roberge, J. Cui, M.R. Martin, D. Fukumura, R.K. Jain, M.G. Bawendi, D.G. Duda, Quantum dot/antibody conjugates for in vivo cytometric imaging in mice, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 1350-1355. https://doi.org/10.1073/pnas.1421632111
- S. Sonali, R.P. Singh, N. Singh, G. Sharma, M.R. Vijayakumar, B. Koch, S. Singh, U. Singh, D. Dash, B.L. Pandey, M.S. Muthu, Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics, Drug Deliv. (2016) 1-11.
- H. Zhu, S. Zhang, Y. Ling, G. Meng, Y. Yang, W. Zhang, pHresponsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery, J. Control. Rel. 220 (2015) 529-544. https://doi.org/10.1016/j.jconrel.2015.11.017
- X. Liang, B. Shi, K. Wang, M. Fan, D. Jiao, J. Ao, N. Song, C. Wang, J. Gu, Z. Li, Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery, Biomaterials 82 (2016) 194-207. https://doi.org/10.1016/j.biomaterials.2015.12.015
- W. Yin, C.W. Kimbrough, J.G. Gomez-Gutierrez, C.T. Burns, P. Chuong, W.E. Grizzle, L.R. McNally, Tumor specific liposomes improve detection of pancreatic adenocarcinoma in vivo using optoacoustic tomography, J. Nanobiotechnol. 13 (2015) 90. https://doi.org/10.1186/s12951-015-0139-8
- H.S. Jeong, C.M. Lee, S.J. Cheong, E.M. Kim, H. Hwang, K.S. Na, S.T. Lim, M.H. Sohn, H.J. Jeong, The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node, J. Liposome Res. 23 (2013) 291-297. https://doi.org/10.3109/08982104.2013.801488
- H.S. Jeong, K.S. Na, H. Hwang, P.S. Oh, D.H. Kim, S.T. Lim, M.H. Sohn, H.J. Jeong, Effect of space length of mannose ligand on uptake of mannosylated liposome in RAW 264.7 cells: in vitro and in vivo studies, J. Biomed. Mater. Res. A 102 (2014) 4545-4553.
- M.A. Fischbach, J.A. Bluestone, W.A. Lim, Cell-based therapeutics: the next pillar of medicine, Sci. Transl. Med. 5 (2013) 179ps7.
- J.E. Kim, B.C. Ahn, H.W. Lee, M.H. Hwang, S.H. Shin, S.W. Lee, Y.K. Sung, J. Lee, In vivo monitoring of survival and proliferation of hair stem cells in a hair follicle generation animal model, Mol. Imaging 12 (2013) 310-317.
- S.S. Yaghoubi, M.C. Jensen, N. Satyamurthy, S. Budhiraja, D. Paik, J. Czernin, S.S. Gambhir, Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma, Nat. Clin. Pract. Oncol. 6 (2009) 53-58. https://doi.org/10.1038/ncponc1278
- B.C. Ahn, Applications of molecular imaging in drug discovery and development process, Curr. Pharm. Biotechnol. 12 (2011) 459-468. https://doi.org/10.2174/138920111795163904
- B.C. Ahn, N. Parashurama, M. Patel, K. Ziv, S. Bhaumik, S.S. Yaghoubi, R. Paulmurugan, S.S. Gambhir, Noninvasive reporter gene imaging of human Oct4 (pluripotency) dynamics during the differentiation of embryonic stem cells in living subjects, Mol. Imaging Biol. 16 (2014) 865-876. https://doi.org/10.1007/s11307-014-0744-1
- H.W. Lee, S.Y. Yoon, T.D. Singh, Y.J. Choi, H.J. Lee, J.Y. Park, S.Y. Jeong, S.W. Lee, J.H. Ha, B.C. Ahn, Y.H. Jeon, J. Lee, Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes, Sci. Rep. 14 (2015) 9865.
- R.J. Creusot, S.S. Yaghoubi, P. Chang, J. Chia, C.H. Contag, S.S. Gambhir, C.G. Fathman, Lymphoid-tissue-specific homing of bone-marrow-derived dendritic cells, Blood 113 (2009) 6638-6647. https://doi.org/10.1182/blood-2009-02-204321
- X. Yu, D. Chen, Y. Zhang, X. Wu, Z. Huang, H. Zhou, Y. Zhang, Z. Zhang, Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke, J. Neurol. Sci. 316 (2012) 141-149. https://doi.org/10.1016/j.jns.2012.01.001
- J. Zhao, J. Vykoukal, M. Abdelsalam, A. Recio-Boiles, Q. Huang, Y. Qiao, B. Singhana, M. Wallace, R. Avritscher, M.P. Melancon, Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma, Nanotechnology 25 (2014) 405101. https://doi.org/10.1088/0957-4484/25/40/405101
Cited by
- Advances in Molecular Imaging Strategies for In Vivo Tracking of Immune Cells vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/1946585
- Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies vol.8, pp.None, 2016, https://doi.org/10.3389/fimmu.2017.01090
- Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47 Sc vol.9, pp.None, 2016, https://doi.org/10.1186/s13550-019-0515-8
- Imaging Constructs: The Rise of Iron Oxide Nanoparticles vol.26, pp.11, 2016, https://doi.org/10.3390/molecules26113437