• Title/Summary/Keyword: Noor iteration

Search Result 14, Processing Time 0.021 seconds

NOOR ITERATIONS FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPINGS

  • Jeong, Jae-Ug;Noor, M.-Aslam;Rafig, A.
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.337-348
    • /
    • 2004
  • In this paper, we suggest and analyze Noor (three-step) iterative scheme for solving nonlinear strongly accretive operator equation Tχ = f. The results obtained in this paper represent an extension as well as refinement of previous known results.

  • PDF

On the Equivalance of Some Fixed Point Iterations

  • Ozdemir, Murat;Akbulut, Sezgin
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.211-217
    • /
    • 2006
  • In this paper, we have shown that the convergence of one-step, two-step and three-step iterations is equivalent, which are known as Mann, Ishikawa and Noor iteration procedures, for a special class of Lipschitzian operators defined in a closed, convex subset of an arbitrary Banach space.

  • PDF

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Chauhan, Surjeet Singh;Utreja, Kiran;Imdad, Mohammad;Ahmadullah, Md
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.1-25
    • /
    • 2017
  • In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

WEAK AND STRONG CONVERGENCE CRITERIA OF MODIFIED NOOR ITERATIONS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Banerjee, Shrabani;Choudhury, Binayak Samadder
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.493-506
    • /
    • 2007
  • In this paper weak and strong convergence theorems of modified Noor iterations to fixed points for asymptotically nonexpansive mappings in the intermediate sense in Banach spaces are established. In one theorem where we establish strong convergence we assume an additional property of the operator whereas in another theorem where we establish weak convergence assume an additional property of the space.

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

Verifying Ontology Increments through Domain and Schema Independent Verbalization

  • Vidanage, Kaneeka;Noor, Noor Maizura Mohamad;Mohemad, Rosmayati;Bakar, Zuriana Aby
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2021
  • Collaborative ontology construction is the latest trend in developing ontologies. In this technique domain specialists and ontologists need to work together. Because of the complexity associated with ontology construction, it's done in an iterative and incremental fashion. After each iteration, an ontology increment will be produced. Current ontology increment is always an enhanced version of the previous increment. Each ontology increment has to be verified for its accuracy. Domain specialists' contribution is very significant in accomplishing this necessity. Unfortunately, non-computing domain specialists (i.e. medical doctors, bankers, lawyers) are illiterate on semantic concepts. Therefore, validating the accuracy of the ontology increment is a complex hurdle for them. This research proposes verbalization approach to address this complexity.

THREE-STEP MEAN VALUE ITERATIVE SCHEME FOR VARIATIONAL INCLUSIONS AND NONEXPANSIVE MAPPINGS

  • Zhang, Fang;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.557-566
    • /
    • 2009
  • In this paper, we present the three-step mean value iterative scheme and prove that the iteration sequence converge strongly to a common element of the set of fixed points of a nonexpansive mappings and the set of the solutions of the variational inclusions under some mild conditions. The results presented in this paper extend, generalize and improve the results of Noor and Huang and some others.

  • PDF