References
- Agarwal, R.P.; O' Regan D. and Sahu, D.R.: Iterative construction of xed points of nearly asymptotically nonexpansive mapping, J. Nonlinear and Convex Anal., 8(1), 61-79 (2007).
- Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comen., 73(1) 119-126 (2004).
- Berinde, V.: Picards iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theor. Appl., 2, 97-105 (2004).
- Berinde, V.: Iterative approximations of xed points, Springer-Verlag, Berlin, (2007).
- Chugh, R. and Kumar, V.: Strong convergence of SP iterative scheme for quasi- contractive operators, Inter. J. Comput. Appl., 31(5) 21-27 (2011).
- Chugh, R.; Kumar, V. and Kumar, S.: Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 345-357 (2012). https://doi.org/10.4236/ajcm.2012.24048
- Crc, L.B.; Lee, B.S. and Raq, A.: Faster Noor iterations, Indian J. Math., 52(3), 429-436 (2010).
- Ishikawa, S.: Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, 147-150.
- Liu, Y. and Chandra, S.G.: The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam, Math. Comput. Model., 50, 1545-1552 (2009). https://doi.org/10.1016/j.mcm.2009.09.005
- Mann, W.R.: Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3), 506-510 (1953). https://doi.org/10.1090/S0002-9939-1953-0054846-3
- Noor, M.A.: New approximation schemes for general variational inequalities, J. Math. Anal. and Appl., 251(1), 217-229 (2000). https://doi.org/10.1006/jmaa.2000.7042
- Olaleru, J.O.: A comparison of picard and Mann iterations of quasi-contractive maps, Fixed Point Theory, 8, 87-95 (2007).
- Pheungrattana, W. and Suantai, S.: On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous on an arbitrary interval, J. Comput. Appl. Math., 235(9), 3006-3014 (2011). https://doi.org/10.1016/j.cam.2010.12.022
- Rhoades, B.E. and Soltuz, S.M.: The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically pseudo-contractive map, J. Math. Anal. Appl., 283, 681-688 (2003). https://doi.org/10.1016/S0022-247X(03)00338-X
- Rhoades, B.E. and Soltuz, S.M.: The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically nonexpansive maps in the inter- mediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl., 289(1), 266-278 (2004). https://doi.org/10.1016/j.jmaa.2003.09.057
- Rhoades, B.E. and Soltuz, S.M.: The equivalence between Mann-Ishikawa and multistep iterations, Nonlinear Analysis, 58(1-2), 219-228 (2004). https://doi.org/10.1016/j.na.2003.11.013
- Soltuz, S.M.: The equivalence of picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math. Communic., 10, 81-89 (2005).
- Soltuz, S.M.: The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and Multistep itrations, Math. Communic., 12, 53-61 (2007).
- Thianwan, S.: common xed points of new iterations for two asymptotically non- expansive nonself mappings in Banach spaces, J. Comput. Appl. Math., 224 688-695 (2009). https://doi.org/10.1016/j.cam.2008.05.051
- Torvattanabun, M.: numerical solution of Fokker-Plank equations by variational iteration method, Inter. J. Math. Anal., 5(44), 2193-2201 (2011).
- Wazwaz, A.M.: A study on linear and nonlinear schrodinger equations by the variational iteration method, Chaos, Solitions and Fractals 37, 1136-1142 (2008). https://doi.org/10.1016/j.chaos.2006.10.009
- Zamrescu, T.: Fixed point theorems in metric space, Archiv der Mathematik, 23(1), 292-298 (1972). https://doi.org/10.1007/BF01304884
- Zhiqum, X.: Remarks on equivalence among Picard, Mann and Ishikawa in normed spaces, Fix. Point Theor. Appl., 5 pages (2007).