DOI QR코드

DOI QR Code

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Received : 2016.01.10
  • Accepted : 2016.12.20
  • Published : 2017.03.25

Abstract

In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

Keywords

References

  1. Agarwal, R.P.; O' Regan D. and Sahu, D.R.: Iterative construction of xed points of nearly asymptotically nonexpansive mapping, J. Nonlinear and Convex Anal., 8(1), 61-79 (2007).
  2. Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comen., 73(1) 119-126 (2004).
  3. Berinde, V.: Picards iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theor. Appl., 2, 97-105 (2004).
  4. Berinde, V.: Iterative approximations of xed points, Springer-Verlag, Berlin, (2007).
  5. Chugh, R. and Kumar, V.: Strong convergence of SP iterative scheme for quasi- contractive operators, Inter. J. Comput. Appl., 31(5) 21-27 (2011).
  6. Chugh, R.; Kumar, V. and Kumar, S.: Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 345-357 (2012). https://doi.org/10.4236/ajcm.2012.24048
  7. Crc, L.B.; Lee, B.S. and Ra q, A.: Faster Noor iterations, Indian J. Math., 52(3), 429-436 (2010).
  8. Ishikawa, S.: Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, 147-150.
  9. Liu, Y. and Chandra, S.G.: The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam, Math. Comput. Model., 50, 1545-1552 (2009). https://doi.org/10.1016/j.mcm.2009.09.005
  10. Mann, W.R.: Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3), 506-510 (1953). https://doi.org/10.1090/S0002-9939-1953-0054846-3
  11. Noor, M.A.: New approximation schemes for general variational inequalities, J. Math. Anal. and Appl., 251(1), 217-229 (2000). https://doi.org/10.1006/jmaa.2000.7042
  12. Olaleru, J.O.: A comparison of picard and Mann iterations of quasi-contractive maps, Fixed Point Theory, 8, 87-95 (2007).
  13. Pheungrattana, W. and Suantai, S.: On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous on an arbitrary interval, J. Comput. Appl. Math., 235(9), 3006-3014 (2011). https://doi.org/10.1016/j.cam.2010.12.022
  14. Rhoades, B.E. and Soltuz, S.M.: The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically pseudo-contractive map, J. Math. Anal. Appl., 283, 681-688 (2003). https://doi.org/10.1016/S0022-247X(03)00338-X
  15. Rhoades, B.E. and Soltuz, S.M.: The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically nonexpansive maps in the inter- mediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl., 289(1), 266-278 (2004). https://doi.org/10.1016/j.jmaa.2003.09.057
  16. Rhoades, B.E. and Soltuz, S.M.: The equivalence between Mann-Ishikawa and multistep iterations, Nonlinear Analysis, 58(1-2), 219-228 (2004). https://doi.org/10.1016/j.na.2003.11.013
  17. Soltuz, S.M.: The equivalence of picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math. Communic., 10, 81-89 (2005).
  18. Soltuz, S.M.: The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and Multistep itrations, Math. Communic., 12, 53-61 (2007).
  19. Thianwan, S.: common xed points of new iterations for two asymptotically non- expansive nonself mappings in Banach spaces, J. Comput. Appl. Math., 224 688-695 (2009). https://doi.org/10.1016/j.cam.2008.05.051
  20. Torvattanabun, M.: numerical solution of Fokker-Plank equations by variational iteration method, Inter. J. Math. Anal., 5(44), 2193-2201 (2011).
  21. Wazwaz, A.M.: A study on linear and nonlinear schrodinger equations by the variational iteration method, Chaos, Solitions and Fractals 37, 1136-1142 (2008). https://doi.org/10.1016/j.chaos.2006.10.009
  22. Zam rescu, T.: Fixed point theorems in metric space, Archiv der Mathematik, 23(1), 292-298 (1972). https://doi.org/10.1007/BF01304884
  23. Zhiqum, X.: Remarks on equivalence among Picard, Mann and Ishikawa in normed spaces, Fix. Point Theor. Appl., 5 pages (2007).