East Asian Math. J.
Vol. 31 (2015), No. 3, pp. 301-310
http://dx.doi.org/10.7858/eamj.2015.021

STRONG CONVERGENCE BY PSEUDOCONTRACTIVE MAPPINGS FOR THE NOOR ITERATION SCHEME

Mee-Kwang Kang

Abstract

In this paper, we establish a strong convergence for the Noor iterative scheme associated with Lipschitz strongly pseudocontractive mappings in real Banach spaces. It's proof-method is very simple by comparing with the previous proofs known.

1. Introduction and preliminaries

Let E be a real Banach space and K a nonempty convex subset of E. Let J denote the normalized duality mapping from E to $2^{E^{*}}$ defined by

$$
J(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{2} \text { and }\left\|f^{*}\right\|=\|x\|\right\}
$$

where E^{*} and $\langle\cdot, \cdot\rangle$ denote the dual space of E and the generalized duality pairing, respectively. We shall denote the single-valued duality mapping by j.

Let $T: D(T) \subset E \rightarrow E$ be a mapping with a domain $D(T)$ in E.
Definition 1. T is said to be L-Lipschitzian if there exists $L>1$ such that for all $x, y \in D(T)$

$$
\|T x-T y\| \leq L\|x-y\| .
$$

Definition 2. T is said to be nonexpansive if the following inequality holds:

$$
\|T x-T y\| \leq\|x-y\| \text { for all } x, y \in D(T)
$$

Definition 3. T is said to be pseudocontractive if the inequality

$$
\|x-y\| \leqslant\|x-y+t((I-T) x-(I-T) y)\|,
$$

holds for all $x, y \in K$ and $t>0$.
Remark 1. As a consequence of a result of Kato [8], T is pseudocontractive if and only if there exists $j(x-y) \in J(x-y)$ such that

$$
\langle T x-T y, j(x-y)\rangle \leqslant\|x-y\|^{2}
$$

[^0]for all $x, y \in K$.
Definition 4 [14]. T is said to be k-strongly pseudocontractive if there exists a constant $k>1$ such that
\[

$$
\begin{equation*}
\|x-y\| \leq\|(1+r)(x-y)-r k(T x-T y)\| \tag{1.1}
\end{equation*}
$$

\]

for all $x, y \in D(T)$ and $r>0$.
Remark 2. From the inequality (1.1) Bogin [2] obtained the following inequality;

$$
\langle T x-T y, j(x-y)\rangle \leq k\|x-y\|^{2} \text { for some } k \in(0,1)
$$

Definition 5. (i) T is said to be accretive if the inequality

$$
\|x-y\| \leq\|x-y+s(T x-T y)\|
$$

holds for all $x, y \in D(T)$ and for all $s>0$.
(ii) T is said to be strongly accretive if there exist a constant $k>0$ and $j(x-y) \in J(x-y)$ such that

$$
\langle T x-T y, j(x-y)\rangle \geq k\|x-y\|^{2} \text { for all } x, y \in D(T)
$$

The class of pseudocontractions is, perhaps, the most important generalization of the class of nonexpansive mappings because of its strong relationship with the class of accretive mappings as follows;

A mapping $T: E \rightarrow E$ is accretive if and only if $I-T$ is pseudocontractive.
In the last few years or so, numerous papers have been published on the iterative approximation of fixed points of Lipschitz strongly pseudocontractive mappings using the Ishikawa iteration scheme (see for example, [7]). Results which had been known only in Hilbert spaces and only for Lipschitz mappings have been extended to more general Banach spaces (see for example $[3-4,6,15]$ and the references cited therein).

In 1974, Ishikawa [7] introduced an iteration scheme which, in some sense, is more general than that of Mann and whose iterative sequence converges, under this setting, to a fixed point of T. He proved the following result.

Theorem 1.1. If K is a compact convex subset of a Hilbert space $H, T: K \mapsto$ K is a Lipschitzian pseudocontractive mapping and x_{1} is any given point in K, then the sequence $\left\{x_{n}\right\}$ converges strongly to a fixed point of T, where x_{n} is defined iteratively for each positive integer $n \geq 1$ by

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}
\end{aligned}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences of positive numbers satisfying the conditions

$$
\text { (i) } 0<\alpha_{n} \leq \beta_{n}<1 ; \text { (ii) } \lim _{n \rightarrow \infty} \beta_{n}=0 ; \text { (iii) } \sum_{n \geq 1} \alpha_{n} \beta_{n}=\infty \text {. }
$$

Let E be a real normed space and K be a nonempty closed convex subset of E. Let $T: K \rightarrow K$ be a mapping.

Algorithm NRH [10, 11]. For a given $x_{0} \in K$, compute the sequence $\left\{x_{n}\right\}_{n \geq 1}$ defined by the iterative schemes

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}, \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T z_{n}, \\
z_{n} & =\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} T x_{n}, n \geq 1,
\end{aligned}
$$

which is called a three-step iterative process, where $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$ are real sequences in [0,1] satisfying some certain conditions.

If $\gamma_{n}=0$ and $\beta_{n}=0$, then Algorithm NRH reduces to:
Algorithm M. For a given $x_{0} \in K$, compute the sequence $\left\{x_{n}\right\}_{n \geq 1}$ defined by the iterative scheme

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, n \geq 1
$$

which is called the Mann iterative process [9].
For $\gamma_{n}=0$, Algorithm NRH becomes:
Algorithm I. Let K be a nonempty convex subset of E and let $T: K \rightarrow K$ be a mapping. For any given $x_{0} \in K$, compute the sequence $\left\{x_{n}\right\}_{n \geq 1}$ defined by the iterative schemes

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}, n \geq 1
\end{aligned}
$$

which is called the two-step Ishikawa iterative process [7].
In [3], Chidume extended the results of Schu [15] from Hilbert spaces to the much more general class of real Banach spaces and the approximation of the fixed points of strongly pseudocontractive mappings.

In [6], Haiyun and Yuting gave the answer of the question raised by Chidume [3] and proved: If X is a real Banach space with a uniformly convex dual X^{*}, K is a nonempty bounded closed convex subset of X, and $T: K \rightarrow K$ is a continuous strongly pseudocontractive mapping, then the iterative sequence due to Ishikawa iteration scheme converges strongly to the unique fixed point of T.

In [10], Noor et al. proved the following result:
Theorem 1.2. Let E be a real uniformly smooth Banach space and K be a nonempty closed convex subset of E. Let T be strongly pseudocontractive self
mapping of K with $T(K)$ bounded. Let $\left\{x_{n}\right\}_{n \geq 1}$ be the sequence defined by

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T z_{n} \\
z_{n} & =\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} T x_{n}, n \geq 0
\end{aligned}
$$

where $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$ are real sequences in $[0,1]$ satisfying the conditions:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty} \gamma_{n} \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

Then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to the unique fixed point of T.
In $[12,13]$, Rafiq proved the generalization of the results of Noor et al. [10, 11] in the form of the following result:

Theorem 1.3. Let E be a real Banach space and K a nonempty closed convex subset of E. Let T be a uniformly continuous and strongly pseudocontractive self mapping of K with $T(K)$ bounded. Let $\left\{x_{n}\right\}_{n \geq 1}$ be the sequence defined by

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T z_{n} \\
z_{n} & =\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} T x_{n}, n \geq 1
\end{aligned}
$$

where $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$ are real sequences in $[0,1]$ satisfying the conditions:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n} \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

Then the sequence $\left\{x_{n}\right\}_{n \geq 1}$ converges strongly to the unique fixed point of T.
In this paper, we establish a strong convergence by the Noor iterative scheme associated with Lipschitz strongly pseudocontractive mappings in real Banach spaces. We also generalize the results of Schu [15] from Hilbert spaces to more general Banach spaces and improve the results of Chidume [3] and Haiyun and Yuting [6].

2. Main Results

The following results will be needed.
Lemma 2.1. [17] Let $J: E \rightarrow 2^{E}$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle \text { for } j(x+y) \in J(x+y)
$$

Lemma 2.2. [12] Let nonnegative real sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ satisfy

$$
a_{n+1} \leq\left(1+c_{n}\right) a_{n}+b_{n} \quad(n \in \mathbb{N}), \quad \Sigma b_{n}<\infty, \quad \Sigma c_{n}<\infty, \text { then }
$$

(a) $\lim _{n \rightarrow \infty} a_{n}$ exists,
(b) If $\underline{l i m}_{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.3. [1] Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences of nonnegative real numbers and $0 \leq q<1$, so that

$$
a_{n+1} \leq q a_{n}+b_{n}, \text { for } n \in \mathbb{N}
$$

(a) If $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) If $\sum_{n=1}^{\infty} b_{n}<\infty$, then $\sum_{n=1}^{\infty} a_{n}<\infty$.

Now we prove our main results.
Theorem 2.4. Let K be a nonempty closed convex subset of a real Banach space E and $T: K \rightarrow K$ a L-Lipschitz k-strongly pseudocontractive mapping. Let $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$ be real sequences in $[0,1]$ such that
(i) $\sum_{n \geq 1}\left(1-\alpha_{n}\right)<\infty$,
(ii) $\alpha_{n} \leq \beta_{n}$ for $n \in \mathbb{N}$.

For given $x_{1} \in K$, let $\left\{x_{n}\right\}_{n \geq 1}$ be iteratively defined by

$$
\begin{align*}
z_{n} & =\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T x_{n} \tag{2.1}\\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) T z_{n} \\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}, n \geq 1 .
\end{align*}
$$

Then the sequence $\left\{x_{n}\right\}_{n \geq 1}$ converges strongly to the unique fixed point of T.
Proof. The existence of a fixed point of the mapping T follows from Deimling [5]. And it is shown in [6] that the set of fixed points for a strongly pseudocontraitive mapping is a singleton.

Let p be the unique fixed point of T.
By (i) $\lim _{n \rightarrow \infty} \alpha_{n}=1$, so there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$,
$1-\alpha_{n} \leq \min \left\{\frac{1}{1+k}, \frac{\eta-1}{2 k \eta}\right\}$, where $\eta>1$.
Consider

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\langle x_{n+1}-p, j\left(x_{n+1}-p\right)\right\rangle \\
= & \left\langle\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}-p, j\left(x_{n+1}-p\right)\right\rangle \\
= & \left\langle\alpha_{n}\left(x_{n}-p\right)+\left(1-\alpha_{n}\right)\left(T y_{n}-p\right), j\left(x_{n+1}-p\right)\right\rangle \\
= & \alpha_{n}\left\langle x_{n}-p, j\left(x_{n+1}-p\right)\right\rangle+\left(1-\alpha_{n}\right)\left\langle T y_{n}-p, j\left(x_{n+1}-p\right)\right\rangle \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|\left\|x_{n+1}-p\right\|+\left(1-\alpha_{n}\right)\left\langle T x_{n+1}-p, j\left(x_{n+1}-p\right)\right\rangle \\
& +\left(1-\alpha_{n}\right)\left\langle T y_{n}-T x_{n+1}, j\left(x_{n+1}-p\right)\right\rangle \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|\left\|x_{n+1}-p\right\|+k\left(1-\alpha_{n}\right)\left\|x_{n+1}-p\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left\|T y_{n}-T x_{n+1}\right\|\left\|x_{n+1}-p\right\|,
\end{aligned}
$$

which implies that
$\left\|x_{n+1}-p\right\| \leq \frac{\alpha_{n}}{1-k\left(1-\alpha_{n}\right)}\left\|x_{n}-p\right\|+\frac{1-\alpha_{n}}{1-k\left(1-\alpha_{n}\right)}\left\|T y_{n}-T x_{n+1}\right\|$.
On the other hand, it can be easily seen that
$\frac{\alpha_{n}}{1-k\left(1-\alpha_{n}\right)}<1$,
and by (2.2),
$\frac{1-\alpha_{n}}{1-k\left(1-\alpha_{n}\right)} \leq 1$ and $\frac{1}{1-2 k\left(1-\alpha_{n}\right)} \leq \eta$.
Hence from (2.3), we have
$\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\|+L\left\|y_{n}-x_{n+1}\right\|$,
where

$$
\begin{align*}
\left\|y_{n}-x_{n+1}\right\| \leq & \left\|y_{n}-x_{n}\right\|+\left\|x_{n}-x_{n+1}\right\| \tag{2.7}\\
= & \left(1-\beta_{n}\right)\left\|x_{n}-T z_{n}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-T y_{n}\right\| \\
\leq & \left(1-\beta_{n}\right)\left(\left\|x_{n}-p\right\|+\left\|T z_{n}-p\right\|\right) \\
& +\left(1-\alpha_{n}\right)\left(\left\|x_{n}-p\right\|+\left\|T y_{n}-p\right\|\right) \\
\leq & \left(1-\beta_{n}\right)\left(\left\|x_{n}-p\right\|+L\left\|z_{n}-p\right\|\right) \\
& +\left(1-\alpha_{n}\right)\left(\left\|x_{n}-p\right\|+L\left\|y_{n}-p\right\|\right), \\
\left\|y_{n}-p\right\|= & \left\|\beta_{n} x_{n}+\left(1-\beta_{n}\right) T z_{n}-p\right\| \tag{2.8}\\
= & \left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(T z_{n}-p\right)\right\| \\
\leq & \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|T z_{n}-p\right\| \\
\leq & \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right) L\left\|z_{n}-p\right\|,
\end{align*}
$$

and

$$
\begin{align*}
\left\|z_{n}-p\right\| & =\left\|\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T x_{n}-p\right\| \tag{2.9}\\
& =\left\|\gamma_{n}\left(x_{n}-p\right)+\left(1-\gamma_{n}\right)\left(T x_{n}-p\right)\right\| \\
& \leq \gamma_{n}\left\|x_{n}-p\right\|+\left(1-\gamma_{n}\right)\left\|T x_{n}-p\right\| \\
& \leq \gamma_{n}\left\|x_{n}-p\right\|+\left(1-\gamma_{n}\right) L\left\|x_{n}-p\right\| \\
& =\left(L-(L-1) \gamma_{n}\right)\left\|x_{n}-p\right\| \\
& \leq L\left\|x_{n}-p\right\| .
\end{align*}
$$

Substituting (2.9) in (2.8), yields

$$
\begin{aligned}
\left\|y_{n}-p\right\| & \leq\left(L^{2}-\left(L^{2}-1\right) \beta_{n}\right)\left\|x_{n}-p\right\| \\
& \leq L^{2}\left\|x_{n}-p\right\|
\end{aligned}
$$

and consequently from (2.7), we obtain

$$
\left\|y_{n}-x_{n+1}\right\| \leq\left(\left(1-\beta_{n}\right)\left(1+L^{2}\right)+\left(1-\alpha_{n}\right)\left(1+L^{3}\right)\right)\left\|x_{n}-p\right\| .
$$

Hence from (2.6), we obtain

$$
\left\|x_{n+1}-p\right\| \leq\left(1+L\left(\left(1-\beta_{n}\right)\left(1+L^{2}\right)+\left(1-\alpha_{n}\right)\left(1+L^{3}\right)\right)\right)\left\|x_{n}-p\right\|
$$

So, from the above discussion, by using the conditions (i), (ii) and Lemma 2, we can conclude that the sequence $\left\{x_{n}-p\right\}_{n \geq 1}$ is bounded. Since T is Lipschitzian, so $\left\{T x_{n}-p\right\}_{n \geq 1}$ is also bounded.

Moreover, by (2.9) $\left\{z_{n}-p\right\}_{n \geq 1}$ is bounded. Thus $\left\{T z_{n}-p\right\}_{n \geq 1}$ is also bounded.

Also by (2.9)

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\| & =(1-\beta)_{n}\left\|x_{n}-T z_{n}\right\| \\
& \leq(1-\beta)_{n}\left(\left\|x_{n}-p\right\|+\left\|T z_{n}-p\right\|\right) \\
& \leq(1-\beta)_{n}\left(\left\|x_{n}-p\right\|+L\left\|z_{n}-p\right\|\right) \\
& \leq(1-\beta)_{n}\left(1+L^{2}\right)\left\|x_{n}-p\right\| \\
& \leq\left(1+L^{2}\right)\left\|x_{n}-p\right\| .
\end{aligned}
$$

So $\left\{x_{n}-y_{n}\right\}_{n \geq 1}$ is bounded.
On the other hand, since

$$
\left\|y_{n}-p\right\| \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-p\right\|,
$$

$\left\{y_{n}-p\right\}_{n \geq 1}$ is bounded. Therefore $\left\{T y_{n}-p\right\}_{n \geq 1}$ is also bounded.
Put $M=\max \left\{\sup _{n \geq 1}\left\|x_{n}-p\right\|, \sup _{n \geq 1}\left\|T x_{n}-p\right\|, \sup _{n \geq 1}\left\|T y_{n}-p\right\|\right\}$.
Now from Lemma 1 for all $n \geq 1$, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}-p\right\|^{2} \\
= & \left\|\alpha_{n}\left(x_{n}-p\right)+\left(1-\alpha_{n}\right)\left(T y_{n}-p\right)\right\|^{2} \\
\leq & \alpha_{n}^{2}\left\|x_{n}-p\right\|^{2}+2\left(1-\alpha_{n}\right)\left\langle T y_{n}-p, j\left(x_{n+1}-p\right)\right\rangle \\
= & \alpha_{n}^{2}\left\|x_{n}-p\right\|^{2}+2\left(1-\alpha_{n}\right)\left\langle T x_{n+1}-p, j\left(x_{n+1}-p\right)\right\rangle \\
& +2\left(1-\alpha_{n}\right)\left\langle T y_{n}-T x_{n+1}, j\left(x_{n+1}-p\right)\right\rangle \\
\leq & \alpha_{n}^{2}\left\|x_{n}-p\right\|^{2}+2 k\left(1-\alpha_{n}\right)\left\|x_{n+1}-p\right\|^{2} \\
& +2\left(1-\alpha_{n}\right)\left\|T y_{n}-T x_{n+1}\right\|\left\|x_{n+1}-p\right\| \\
\leq & \alpha_{n}^{2}\left\|x_{n}-p\right\|^{2}+2 k\left(1-\alpha_{n}\right)\left\|x_{n+1}-p\right\|^{2} \\
& +4 M^{2}\left(1-\alpha_{n}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n+1}-p\right\|^{2} \leq \frac{\alpha_{n}^{2}}{1-2 k\left(1-\alpha_{n}\right)}\left\|x_{n}-p\right\|^{2}+\frac{4 M^{2}\left(1-\alpha_{n}\right)}{1-2 k\left(1-\alpha_{n}\right)} \tag{2.11}
\end{equation*}
$$

By (ii), $\lim _{n \rightarrow \infty} \beta_{n}=1$, thus there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$,
$\beta_{n} \leq \frac{\theta}{\eta} ; 0<\theta<1$.

Hence from condition (ii), (2.5), (2.11) and (2.12) we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq \alpha_{n}^{2} \eta\left\|x_{n}-p\right\|^{2}+4 \eta M^{2}\left(1-\alpha_{n}\right) \tag{2.13}\\
& \leq \theta\left\|x_{n}-p\right\|^{2}+4 \eta M^{2}\left(1-\alpha_{n}\right)
\end{align*}
$$

For all $n \geq 1$, put

$$
\begin{aligned}
a_{n} & =\left\|x_{n}-p\right\| \\
b_{n} & =4 \eta M^{2}\left(1-\alpha_{n}\right) \\
q & =\theta
\end{aligned}
$$

then according to Lemma 3, we obtain from (2.13) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0
$$

which completes the proof.
Corollary 2.5. Let K be a nonempty closed convex subset of a real Hilbert space E and $T: K \rightarrow K$ a Lipschitz strongly pseudocontractive mapping. Let $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$ be sequences in $[0,1]$ such that (i) $\sum_{n \geq 1}(1-$ $\left.\alpha_{n}\right)<\infty$ and (ii) $\alpha_{n} \leq \beta_{n}$ for $n \in \mathbb{N}$. For given $x_{1} \in K$, let $\left\{x_{n}\right\}_{n \geq 1}$ be iteratively defined by

$$
\begin{aligned}
z_{n} & =\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T x_{n} \\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) T z_{n} \\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}, n \geq 1
\end{aligned}
$$

Then the sequence $\left\{x_{n}\right\}_{n \geq 1}$ converges strongly to the unique fixed point of T.
The proof of the following result is the same as the Proof of Theorem 4.
Theorem 2.6. Let K be a nonempty closed convex subset of a real Banach space E and $T, S, H: K \rightarrow K$ Lipschitz strongly pseudocontractive mappings such that $F(T) \cap F(S) \cap F(H)$ is nonempty. Let $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$ be sequences in $[0,1]$ such that (i) $\sum_{n \geq 1}\left(1-\alpha_{n}\right)<\infty$ and (ii) $\alpha_{n} \leq \beta_{n} \overline{\text { for }}$ $n \in \mathbb{N}$. For given $x_{1} \in K$, let $\left\{x_{n}\right\}_{n \geq 1}$ be iteratively defined by

$$
\begin{aligned}
z_{n} & =\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T x_{n} \\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) T z_{n} \\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}, n \geq 1
\end{aligned}
$$

Then the sequence $\left\{x_{n}\right\}_{n \geq 1}$ converges strongly to the common fixed point of T, S and H.

Corollary 2.7. Let K be a nonempty closed convex subset of a real Hilbert space E and $T, S, H: K \rightarrow K$ Lipschitz strongly pseudocontractive mappings such that $F(T) \cap F(S) \cap F(H)$ is nonempty. Let $\left\{\alpha_{n}\right\}_{n \geq 1},\left\{\beta_{n}\right\}_{n \geq 1}$ and $\left\{\gamma_{n}\right\}_{n \geq 1}$
be sequences in $[0,1]$ such that (i) $\sum_{n \geq 1}\left(1-\alpha_{n}\right)<\infty$, (ii) $\alpha_{n} \leq \beta_{n}$ for $n \in \mathbb{N}$. For given $x_{1} \in K$, let $\left\{x_{n}\right\}_{n \geq 1}$ be iteratively defined by

$$
\begin{aligned}
z_{n} & =\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) H x_{n} \\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) S z_{n} \\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}, n \geq 1
\end{aligned}
$$

Then the sequence $\left\{x_{n}\right\}_{n \geq 1}$ converges strongly to the common fixed point of T, S and H.

Remark 3. It is worth to mention that,

1. The results of Chidume[3] and Haiyun and Yuting [6] depend upon the geometry of the Banach space, where as in our case we do not need such geometry.
2. We remove the boundedness assumption on K introduced both in [3] and [6].
3. We remove the assumption $T(K)$ on the mapping T in [10-13].

References

[1] V. Berinde, Generalized Contractions and Applications (Romanian), Editura Cub Press 22, Baia Mare, 1997.
[2] J. Bogin, On strict pseudocontractions and a fixed point theorem, Technion Preprint MT-29, Haifa, 1974.
[3] C. E. Chidume, Approximation of fixed points of strongly pseudocontractive mappings, Proc. Amer. Math. Soc. 120 (2) (1994), 545-551. MR 94d:47056
[4] C. E. Chidume, A. Udomene, Strong convergence theorems for uniformly continuous pseudocontractive maps, J. Math. Anal. Appl. 323 (1) (2006), 88-99.
[5] K. Deimling, Zeros of accretive operators, Manucripta Math. 13 (1974), 283-288. MR 50:3030
[6] Z. Haiyun and J. Yuting, Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125 (6) (1997), 1705-1709.
[7] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
[8] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[10] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229.
[11] M. A. Noor, T. M. Rassias and Z. Huang, Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl. 274 (2002), 59-68.
[12] Liu Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24.
[13] A. Rafiq, Modified Noor iterations for nonlinear equations in Banach spaces, Appl. Math. Compt. 182 (2006), 589-595.
[14] A. Rafiq, Iterative solution of nonlinear equations involving generalized ϕ-hemicontractive mappings, Indian J. Math. 50 (2) (2008), 365-380.
[15] A. Rafiq, A new implicit iteration process for three strongly pseudocontractive mappings, Indian J. Math. 53 (3) (2011), 419-428.
[16] J. Schu, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), 107-115.
[17] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (12) (1991), 1127-1138.

Mee-Kwang Kang
Department of Mathematics, Dongeui University, Busan 614-714, Korea
E-mail address: mee@deu.ac.kr

[^0]: Received December 1, 2014; Accepted February 13, 2015.
 2010 Mathematics Subject Classification. Primary 47H10, 47H17: Secondary 54H25.
 Key words and phrases. Noor iterative scheme, normalized duality mappings, Lipschitz strongly pseudocontractive mappings, Banach spaces.

 This work was supported by Dongeui University (2013AA072).

