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STRONG CONVERGENCE BY PSEUDOCONTRACTIVE

MAPPINGS FOR THE NOOR ITERATION SCHEME

Mee-Kwang Kang

Abstract. In this paper, we establish a strong convergence for the Noor

iterative scheme associated with Lipschitz strongly pseudocontractive map-
pings in real Banach spaces. It’s proof-method is very simple by comparing

with the previous proofs known.

1. Introduction and preliminaries

Let E be a real Banach space and K a nonempty convex subset of E. Let J
denote the normalized duality mapping from E to 2E

∗
defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ||x||2 and ||f∗|| = ||x||},
where E∗ and 〈·, ·〉 denote the dual space of E and the generalized duality
pairing, respectively. We shall denote the single-valued duality mapping by j.

Let T : D(T ) ⊂ E → E be a mapping with a domain D(T ) in E.

Definition 1. T is said to be L-Lipschitzian if there exists L > 1 such that for
all x, y ∈ D(T )

‖Tx− Ty‖ ≤ L ‖x− y‖ .

Definition 2. T is said to be nonexpansive if the following inequality holds:

‖Tx− Ty‖ ≤ ‖x− y ‖ for all x, y ∈ D(T ).

Definition 3. T is said to be pseudocontractive if the inequality

‖x− y‖ 6‖ x− y + t((I − T )x− (I − T )y) ‖,
holds for all x, y ∈ K and t > 0.

Remark 1. As a consequence of a result of Kato [8],
T is pseudocontractive if and only if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 6 ‖x− y‖2
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for all x, y ∈ K.

Definition 4 [14]. T is said to be k-strongly pseudocontractive if there
exists a constant k > 1 such that

(1.1) ‖x− y‖ ≤ ‖(1 + r)(x− y)− rk(Tx− Ty)‖

for all x, y ∈ D(T ) and r > 0.

Remark 2. From the inequality (1.1) Bogin [2] obtained the following inequality;

〈Tx− Ty, j(x− y)〉 ≤ k||x− y||2 for some k ∈ (0, 1).

Definition 5. (i) T is said to be accretive if the inequality

||x− y|| ≤ ||x− y + s(Tx− Ty)||

holds for all x, y ∈ D(T ) and for all s > 0.
(ii) T is said to be strongly accretive if there exist a constant k > 0 and

j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ k||x− y||2 for all x, y ∈ D(T ).

The class of pseudocontractions is, perhaps, the most important generaliza-
tion of the class of nonexpansive mappings because of its strong relationship
with the class of accretive mappings as follows;

A mapping T : E → E is accretive if and only if I − T is pseudocontractive.

In the last few years or so, numerous papers have been published on the
iterative approximation of fixed points of Lipschitz strongly pseudocontractive
mappings using the Ishikawa iteration scheme (see for example, [7]). Results
which had been known only in Hilbert spaces and only for Lipschitz mappings
have been extended to more general Banach spaces (see for example [3-4, 6, 15]
and the references cited therein).

In 1974, Ishikawa [7] introduced an iteration scheme which, in some sense, is
more general than that of Mann and whose iterative sequence converges, under
this setting, to a fixed point of T . He proved the following result.

Theorem 1.1. If K is a compact convex subset of a Hilbert space H, T : K 7→
K is a Lipschitzian pseudocontractive mapping and x1 is any given point in
K, then the sequence {xn} converges strongly to a fixed point of T , where xn
is defined iteratively for each positive integer n ≥ 1 by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn,

where {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 < αn ≤ βn < 1; (ii) lim
n→∞

βn = 0; (iii)
∑
n≥1

αnβn =∞.
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Let E be a real normed space and K be a nonempty closed convex subset of
E. Let T : K → K be a mapping.

Algorithm NRH [10, 11]. For a given x0 ∈ K, compute the sequence
{xn}n≥1 defined by the iterative schemes

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

which is called a three-step iterative process, where {αn}n≥1 , {βn}n≥1 and
{γn}n≥1 are real sequences in [0,1] satisfying some certain conditions.

If γn = 0 and βn = 0, then Algorithm NRH reduces to:
Algorithm M. For a given x0 ∈ K, compute the sequence {xn}n≥1 defined

by the iterative scheme

xn+1 = (1− αn)xn + αnTxn, n ≥ 1,

which is called the Mann iterative process [9].

For γn = 0, Algorithm NRH becomes:
Algorithm I. Let K be a nonempty convex subset of E and let T : K → K

be a mapping. For any given x0 ∈ K, compute the sequence {xn}n≥1 defined
by the iterative schemes

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,

which is called the two-step Ishikawa iterative process [7].

In [3], Chidume extended the results of Schu [15] from Hilbert spaces to the
much more general class of real Banach spaces and the approximation of the
fixed points of strongly pseudocontractive mappings.

In [6], Haiyun and Yuting gave the answer of the question raised by Chidume
[3] and proved: If X is a real Banach space with a uniformly convex dual X∗,
K is a nonempty bounded closed convex subset of X, and T : K → K is a con-
tinuous strongly pseudocontractive mapping, then the iterative sequence due to
Ishikawa iteration scheme converges strongly to the unique fixed point of T .

In [10], Noor et al. proved the following result:

Theorem 1.2. Let E be a real uniformly smooth Banach space and K be a
nonempty closed convex subset of E. Let T be strongly pseudocontractive self
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mapping of K with T (K) bounded. Let {xn}n≥1 be the sequence defined by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 0,

where {αn}n≥1, {βn}n≥1 and {γn}n≥1 are real sequences in [0, 1] satisfying the
conditions:

lim
n→∞

αn = 0 = lim
n→∞

βn = lim
n→∞

γn and

∞∑
n=1

αn =∞.

Then the sequence {xn}∞n=0 converges strongly to the unique fixed point of T.

In [12, 13], Rafiq proved the generalization of the results of Noor et al. [10,
11] in the form of the following result:

Theorem 1.3. Let E be a real Banach space and K a nonempty closed convex
subset of E. Let T be a uniformly continuous and strongly pseudocontractive self
mapping of K with T (K) bounded. Let {xn}n≥1 be the sequence defined by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

where {αn}n≥1, {βn}n≥1 and {γn}n≥1 are real sequences in [0, 1] satisfying the
conditions:

lim
n→∞

αn = 0 = lim
n→∞

βn and

∞∑
n=1

αn =∞.

Then the sequence {xn}n≥1 converges strongly to the unique fixed point of T.

In this paper, we establish a strong convergence by the Noor iterative scheme
associated with Lipschitz strongly pseudocontractive mappings in real Banach
spaces. We also generalize the results of Schu [15] from Hilbert spaces to more
general Banach spaces and improve the results of Chidume [3] and Haiyun and
Yuting [6].

2. Main Results

The following results will be needed.

Lemma 2.1. [17] Let J : E → 2E be the normalized duality mapping. Then
for any x, y ∈ E, we have

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉 for j(x+ y) ∈ J(x+ y).

Lemma 2.2. [12] Let nonnegative real sequences {an}, {bn} and {cn} satisfy

an+1 ≤ (1 + cn)an + bn (n ∈ N), Σbn <∞, Σcn <∞, then

(a) lim
n→∞

an exists,
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(b) If lim
n→∞

an = 0, then lim
n→∞

an = 0.

Lemma 2.3. [1] Let {an}∞n=0 and {bn}∞n=0 be sequences of nonnegative real
numbers and 0 ≤ q < 1, so that

an+1 ≤ qan + bn, for n ∈ N.

(a) If lim
n→∞

bn = 0, then lim
n→∞

an = 0.

(b) If
∑∞

n=1 bn <∞, then
∑∞

n=1 an <∞.

Now we prove our main results.

Theorem 2.4. Let K be a nonempty closed convex subset of a real Banach
space E and T : K → K a L-Lipschitz k-strongly pseudocontractive mapping.
Let {αn}n≥1, {βn}n≥1 and {γn}n≥1 be real sequences in [0, 1] such that

(i)
∑

n≥1(1− αn) <∞,
(ii) αn ≤ βn for n ∈ N.

For given x1 ∈ K, let {xn}n≥1 be iteratively defined by

zn = γnxn + (1− γn)Txn, (2.1)

yn = βnxn + (1− βn)Tzn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 1.

Then the sequence {xn}n≥1 converges strongly to the unique fixed point of T.

Proof. The existence of a fixed point of the mapping T follows from Deimling [5].
And it is shown in [6] that the set of fixed points for a strongly pseudocontraitive
mapping is a singleton.

Let p be the unique fixed point of T .
By (i) lim

n→∞
αn = 1, so there exists n0 ∈ N such that for n ≥ n0,

1− αn ≤ min{ 1

1 + k
,
η − 1

2kη
}, where η > 1. (2.2)

Consider

||xn+1 − p||2 = 〈xn+1 − p, j(xn+1 − p)〉
= 〈αnxn + (1− αn)Tyn − p, j(xn+1 − p)〉
= 〈αn(xn − p) + (1− αn) (Tyn − p), j(xn+1 − p)〉
= αn 〈xn − p, j(xn+1 − p)〉+ (1− αn) 〈Tyn − p, j(xn+1 − p)〉
≤ αn ‖xn − p‖ ‖xn+1 − p‖+ (1− αn) 〈Txn+1 − p, j(xn+1 − p)〉

+ (1− αn) 〈Tyn − Txn+1, j(xn+1 − p)〉
≤ αn ‖xn − p‖ ‖xn+1 − p‖+ k (1− αn) ||xn+1 − p||2

+ (1− αn) ‖Tyn − Txn+1‖ ‖xn+1 − p‖ ,
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which implies that

||xn+1 − p|| ≤
αn

1− k (1− αn)
‖xn − p‖+

1− αn

1− k (1− αn)
‖Tyn − Txn+1‖ . (2.3)

On the other hand, it can be easily seen that
αn

1− k (1− αn)
< 1, (2.4)

and by (2.2),

1− αn

1− k (1− αn)
≤ 1 and

1

1− 2k(1− αn)
≤ η. (2.5)

Hence from (2.3), we have

||xn+1 − p|| ≤ ‖xn − p‖+ L ‖yn − xn+1‖ , (2.6)

where

‖yn − xn+1‖ ≤ ‖yn − xn‖+ ‖xn − xn+1‖ (2.7)

= (1− βn) ‖xn − Tzn‖+ (1− αn) ‖xn − Tyn‖
≤ (1− βn) (‖xn − p‖+ ‖Tzn − p‖)

+(1− αn) (‖xn − p‖+ ‖Tyn − p‖)
≤ (1− βn) (‖xn − p‖+ L ‖zn − p‖)

+(1− αn) (‖xn − p‖+ L ‖yn − p‖) ,

‖yn − p‖ = ‖βnxn + (1− βn)Tzn − p‖ (2.8)

= ‖βn(xn − p) + (1− βn)(Tzn − p)‖
≤ βn ‖xn − p‖+ (1− βn) ‖Tzn − p‖
≤ βn ‖xn − p‖+ (1− βn)L ‖zn − p‖ ,

and

‖zn − p‖ = ‖γnxn + (1− γn)Txn − p‖ (2.9)

= ‖γn(xn − p) + (1− γn)(Txn − p)‖
≤ γn ‖xn − p‖+ (1− γn) ‖Txn − p‖
≤ γn ‖xn − p‖+ (1− γn)L ‖xn − p‖
= (L− (L− 1) γn) ‖xn − p‖
≤ L ‖xn − p‖ .

Substituting (2.9) in (2.8), yields

‖yn − p‖ ≤ (L2 −
(
L2 − 1

)
βn) ‖xn − p‖ (2.10)

≤ L2 ‖xn − p‖ ,
and consequently from (2.7), we obtain

‖yn − xn+1‖ ≤
(
(1− βn)(1 + L2) + (1− αn)(1 + L3)

)
‖xn − p‖ .
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Hence from (2.6), we obtain

||xn+1 − p|| ≤
(
1 + L

(
(1− βn)(1 + L2) + (1− αn)(1 + L3)

))
‖xn − p‖ .

So, from the above discussion, by using the conditions (i), (ii) and Lemma 2, we
can conclude that the sequence {xn−p}n≥1 is bounded. Since T is Lipschitzian,
so {Txn − p}n≥1 is also bounded.

Moreover, by (2.9) {zn − p}n≥1 is bounded. Thus {Tzn − p}n≥1 is also
bounded.

Also by (2.9)

‖xn − yn‖ = (1− β)n||xn − Tzn||
≤ (1− β)n (||xn − p||+ ||Tzn − p||)
≤ (1− β)n (||xn − p||+ L||zn − p||)
≤ (1− β)n

(
1 + L2

)
||xn − p||

≤
(
1 + L2

)
||xn − p||.

So {xn − yn}n≥1 is bounded.
On the other hand, since

‖yn − p‖ ≤ ‖yn − xn‖+ ||xn − p||,
{yn − p}n≥1 is bounded. Therefore {Tyn − p}n≥1 is also bounded.

Put M = max

{
sup
n≥1
‖xn − p‖, sup

n≥1
‖Txn − p‖, sup

n≥1
‖Tyn − p‖

}
.

Now from Lemma 1 for all n ≥ 1, we obtain

‖xn+1 − p‖2 = ||αnxn + (1− αn)Tyn − p||2

= ||αn(xn − p) + (1− αn)(Tyn − p)||2

≤ α2
n||xn − p||2 + 2(1− αn)〈Tyn − p, j(xn+1 − p)〉

= α2
n||xn − p||2 + 2(1− αn)〈Txn+1 − p, j(xn+1 − p)〉

+2(1− αn)〈Tyn − Txn+1, j(xn+1 − p)〉
≤ α2

n||xn − p||2 + 2k(1− αn)||xn+1 − p||2

+2(1− αn) ‖Tyn − Txn+1‖ ‖xn+1 − p‖
≤ α2

n||xn − p||2 + 2k(1− αn)||xn+1 − p||2

+4M2(1− αn),

which implies that

‖xn+1 − p‖2 ≤
α2
n

1− 2k(1− αn)
||xn − p||2 +

4M2(1− αn)

1− 2k(1− αn)
. (2.11)

By (ii), lim
n→∞

βn = 1, thus there exists n0 ∈ N such that for n ≥ n0,

βn ≤
θ

η
; 0 < θ < 1. (2.12)
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Hence from condition (ii), (2.5), (2.11) and (2.12) we get

‖xn+1 − p‖2 ≤ α2
nη||xn − p||2 + 4ηM2 (1− αn) (2.13)

≤ θ||xn − p||2 + 4ηM2 (1− αn) .

For all n ≥ 1, put

an = ‖xn − p‖ ,
bn = 4ηM2 (1− αn) ,

q = θ,

then according to Lemma 3, we obtain from (2.13) that

lim
n→∞

||xn − p|| = 0,

which completes the proof. �

Corollary 2.5. Let K be a nonempty closed convex subset of a real Hilbert
space E and T : K → K a Lipschitz strongly pseudocontractive mapping. Let
{αn}n≥1, {βn}n≥1 and {γn}n≥1 be sequences in [0, 1] such that (i)

∑
n≥1(1 −

αn) < ∞ and (ii) αn ≤ βn for n ∈ N. For given x1 ∈ K, let {xn}n≥1 be
iteratively defined by

zn = γnxn + (1− γn)Txn,

yn = βnxn + (1− βn)Tzn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 1.

Then the sequence {xn}n≥1 converges strongly to the unique fixed point of T.

The proof of the following result is the same as the Proof of Theorem 4.

Theorem 2.6. Let K be a nonempty closed convex subset of a real Banach
space E and T, S,H : K → K Lipschitz strongly pseudocontractive mappings
such that F(T) ∩F (S)∩F (H) is nonempty. Let {αn}n≥1, {βn}n≥1 and {γn}n≥1
be sequences in [0, 1] such that (i)

∑
n≥1(1 − αn) < ∞ and (ii) αn ≤ βn for

n ∈ N. For given x1 ∈ K, let {xn}n≥1 be iteratively defined by

zn = γnxn + (1− γn)Txn,

yn = βnxn + (1− βn)Tzn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 1.

Then the sequence {xn}n≥1 converges strongly to the common fixed point of T, S
and H.

Corollary 2.7. Let K be a nonempty closed convex subset of a real Hilbert
space E and T, S,H : K → K Lipschitz strongly pseudocontractive mappings
such that F (T )∩F (S)∩F (H) is nonempty. Let {αn}n≥1, {βn}n≥1 and {γn}n≥1
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be sequences in [0, 1] such that (i)
∑

n≥1(1− αn) <∞, (ii) αn ≤ βn for n ∈ N.

For given x1 ∈ K, let {xn}n≥1 be iteratively defined by

zn = γnxn + (1− γn)Hxn,

yn = βnxn + (1− βn)Szn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 1.

Then the sequence {xn}n≥1 converges strongly to the common fixed point of T, S
and H.

Remark 3. It is worth to mention that,
1. The results of Chidume[3] and Haiyun and Yuting [6] depend upon the

geometry of the Banach space, where as in our case we do not need such geom-
etry.

2. We remove the boundedness assumption on K introduced both in [3] and
[6].

3. We remove the assumption T (K) on the mapping T in [10-13].
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