• Title/Summary/Keyword: Nonparametric and data-adaptive method

Search Result 9, Processing Time 0.028 seconds

Selection of Data-adaptive Polynomial Order in Local Polynomial Nonparametric Regression

  • Jo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.177-183
    • /
    • 1997
  • A data-adaptive order selection procedure is proposed for local polynomial nonparametric regression. For each given polynomial order, bias and variance are estimated and the adaptive polynomial order that has the smallest estimated mean squared error is selected locally at each location point. To estimate mean squared error, empirical bias estimate of Ruppert (1995) and local polynomial variance estimate of Ruppert, Wand, Wand, Holst and Hossjer (1995) are used. Since the proposed method does not require fitting polynomial model of order higher than the model order, it is simpler than the order selection method proposed by Fan and Gijbels (1995b).

  • PDF

Using Artificial Neural Networks to detect Variance Change Point for Data Separation

  • Han Young-Chul;Oh Kyong-Joo;Kim Tae-Yoon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1214-1220
    • /
    • 2006
  • In this article, it will be shown that a nonparametric and data-adaptive approach to the variance change point (VCP) detection problem is possible by formulating it as a pattern classification problem. Technical aspects of the VCP detector are discussed, which include its training strategy and selection of proper classification tool.

  • PDF

An Adaptive Face Recognition System Based on a Novel Incremental Kernel Nonparametric Discriminant Analysis

  • SOULA, Arbia;SAID, Salma BEN;KSANTINI, Riadh;LACHIRI, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2129-2147
    • /
    • 2019
  • This paper introduces an adaptive face recognition method based on a Novel Incremental Kernel Nonparametric Discriminant Analysis (IKNDA) that is able to learn through time. More precisely, the IKNDA has the advantage of incrementally reducing data dimension, in a discriminative manner, as new samples are added asynchronously. Thus, it handles dynamic and large data in a better way. In order to perform face recognition effectively, we combine the Gabor features and the ordinal measures to extract the facial features that are coded across local parts, as visual primitives. The variegated ordinal measures are extraught from Gabor filtering responses. Then, the histogram of these primitives, across a variety of facial zones, is intermingled to procure a feature vector. This latter's dimension is slimmed down using PCA. Finally, the latter is treated as a facial vector input for the advanced IKNDA. A comparative evaluation of the IKNDA is performed for face recognition, besides, for other classification endeavors, in a decontextualized evaluation schemes. In such a scheme, we compare the IKNDA model to some relevant state-of-the-art incremental and batch discriminant models. Experimental results show that the IKNDA outperforms these discriminant models and is better tool to improve face recognition performance.

Efficient Score Estimation and Adaptive Rank and M-estimators from Left-Truncated and Right-Censored Data

  • Chul-Ki Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1996
  • Data-dependent (adaptive) choice of asymptotically efficient score functions for rank estimators and M-estimators of regression parameters in a linear regression model with left-truncated and right-censored data are developed herein. The locally adaptive smoothing techniques of Muller and Wang (1990) and Uzunogullari and Wang (1992) provide good estimates of the hazard function h and its derivative h' from left-truncated and right-censored data. However, since we need to estimate h'/h for the asymptotically optimal choice of score functions, the naive estimator, which is just a ratio of estimated h' and h, turns out to have a few drawbacks. An altermative method to overcome these shortcomings and also to speed up the algorithms is developed. In particular, we use a subroutine of the PPR (Projection Pursuit Regression) method coded by Friedman and Stuetzle (1981) to find the nonparametric derivative of log(h) for the problem of estimating h'/h.

  • PDF

An Adaptive Test for Ordered Interqartile Ranges among Several Distributions

  • Park, Chul-Gyu
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 2001
  • An adaptive estimation and testing method is proposed for comparing dispersions among several ordered groups. Based upon the large sampling theory for nonparametric quartile estimators, we derive the order restricted estimators and construct a simple test statistic. This test statistic has a mixture of several chi-square distributions as its asymptotic null distribution. The proposed test is illustratively applied to survival time data for the patients with carcinoma of the oropharynx.

  • PDF

Nonlinear structural modeling using multivariate adaptive regression splines

  • Zhang, Wengang;Goh, A.T.C.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.569-585
    • /
    • 2015
  • Various computational tools are available for modeling highly nonlinear structural engineering problems that lack a precise analytical theory or understanding of the phenomena involved. This paper adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between variables. The MARS method makes no specific assumptions about the underlying functional relationship between the input variables and the response. Details of MARS methodology and its associated procedures are introduced first, followed by a number of examples including three practical structural engineering problems. These examples indicate that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the model enables engineers to have an insight and understanding of where significant changes in the data may occur. An example is also presented to demonstrate how the MARS developed model can be used to carry out structural reliability analysis.

Nonparametric logistic regression based on sparse triangulation over a compact domain

  • Seoyeon Kim;Kwan-Young Bak
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Based on the investigation of logistic regression models utilizing sparse triangulation within a compact domain in ℝ2, this study addresses the limited research extending the triogram model to logistic regression. A primary challenge arises from the potential instability induced by a large number of vertices, hindering the effective modeling of complex relationships. To mitigate this challenge, we propose introducing sparsity to boundary vertices of the triangulation based on the Ramer-Douglas-Peucker algorithm and employing the K-means algorithm for adaptive vertex initialization. A second order coordinate-wise descent algorithm is adopted to implement the proposed method. Validation of the proposed algorithm's stability and performance assessment are conducted using synthetic and handwritten digit data (LeCun et al., 1989). Results demonstrate the advantages of our method over existing methodologies, particularly when dealing with non-rectangular data domains.

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.

QoS- and Revenue Aware Adaptive Scheduling Algorithm

  • Joutsensalo, Jyrki;Hamalainen, Timo;Sayenko, Alexander;Paakkonen, Mikko
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.68-77
    • /
    • 2004
  • In the near future packet networks should support applications which can not predict their traffic requirements in advance, but still have tight quality of service requirements, e.g., guaranteed bandwidth, jitter, and packet loss. These dynamic characteristics mean that the sources can be made to modify their data transfer rates according to network conditions. Depending on the customer&; needs, network operator can differentiate incoming connections and handle those in the buffers and the interfaces in different ways. In this paper, dynamic QoS-aware scheduling algorithm is presented and investigated in the single node case. The purpose of the algorithm is in addition to fair resource sharing to different types of traffic classes with different priorities ?to maximize revenue of the service provider. It is derived from the linear type of revenue target function, and closed form globally optimal formula is presented. The method is computationally inexpensive, while still producing maximal revenue. Due to the simplicity of the algorithm, it can operate in the highly nonstationary environments. In addition, it is nonparametric and deterministic in the sense that it uses only the information about the number of users and their traffic classes, not about call density functions or duration distributions. Also, Call Admission Control (CAC) mechanism is used by hypothesis testing.