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Abstract
Based on the investigation of logistic regression models utilizing sparse triangulation within a compact do-

main in R2, this study addresses the limited research extending the triogram model to logistic regression. A pri-
mary challenge arises from the potential instability induced by a large number of vertices, hindering the effective
modeling of complex relationships. To mitigate this challenge, we propose introducing sparsity to boundary ver-
tices of the triangulation based on the Ramer-Douglas-Peucker algorithm and employing the K-means algorithm
for adaptive vertex initialization. A second order coordinate-wise descent algorithm is adopted to implement the
proposed method. Validation of the proposed algorithm’s stability and performance assessment are conducted us-
ing synthetic and handwritten digit data (LeCun et al., 1989). Results demonstrate the advantages of our method
over existing methodologies, particularly when dealing with non-rectangular data domains.

Keywords: barycentric coordinates, coordinate descent algorithm, logistic regression, RDP algo-
rithm, triangulation

1. Introduction

Multiple regression is an important cornerstone of supervised learning in statistics with countless ap-
plications. It is used to identify the relationship between multiple predictors and a response variable.
The basic idea extends to the generalized linear model in which the predictor is related to the response
variable via a link function when the conditional distribution of the response belongs to an exponen-
tial family with some regularity conditions; see Nelder and Wedderburn (1972). A straightforward
approach in the (generalized) linear model is to use a linear predictor, which is a linear combination
of predictor variables. However, this approach is often too restrictive in many practical applications,
especially when the predictors are related to the mean of the response via a complicated relationship.
Nonparametric regression methods have the advantage of uncovering complex relationships between
the predictors and response. Examples of nonparametric methods include local polynomial regres-
sion, kernel regression, basis expansion methodology such as spline and wavelet regression, and so
on. One may refer to Tsybakov (2008); Hastie et al. (2009); Wasserman (2006) for an overview of
nonparametric regression.

Many nonparametric estimation methods are known to enjoy good theoretical properties at least in
the asymptotic sense. However, when examining performance in finite samples, considerations of the

This research was supported by National Research Foundation (NRF) of Korea, RS-2022-00165581.
1Corresponding author: School of Mathematics, Statistics and Data Science, Sungshin Women’s University, 2 Bomun-ro

34 Da-gil, Seongbuk-gu, Seoul 02844, Korea. E-mail: kybak@sungshin.ac.kr

Published 30 September 2024 / journal homepage: http://csam.or.kr
© 2024 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



558 Seoyeon Kim, Kwan-Young Bak

domain can lead to significant differences. Even in problems of estimating one-dimensional functions,
extensive research has been conducted on methodologies aimed at addressing the impact of domain
shape on estimation accuracy. Examples include estimating functions on positive domains (Geenens,
2021; Wright and Zabin, 1994), boundary effects (Müller, 1991), and estimation across the entire
real line (Bak et al., 2021). Especially when dealing with multidimensional spaces, nonparametric
methods typically require large sample sizes, making the influence of domain shape on estimation
even more evident. Therefore, the development of techniques for smoothing and spatial regression
applied to datasets distributed across domains with intricate geometries is a significant research topic
in nonparametric estimation. To explore related issues and recent research findings, one can refer
to Ferraccioli et al. (2021); Ramsay (2002); Sangalli et al. (2013); Wang and Ranalli (2007); Scott-
Hayward et al. (2014), as well as the references cited therein.

Different shapes of domains impacting estimation accuracy is also observed within the general-
ized linear model framework. However, research into the development of estimation methodologies
that reflect this phenomenon is very limited. Within the nonparametric approach to generalized linear
models, the standard approach involves considering a tensor product space. In a popular approach
using the regression spline model, this corresponds to constructing a tensor product spline basis for
estimation. For example, Stone (1994) considered the use of polynomial splines and their tensor prod-
ucts in multivariate function estimation and showed that it leads to desirable statistical properties.
However, a possible drawback of the tensor product spline method is that it implicitly assumes the
shape of the domain. Specifically, tensor product splines assume that predictors are observed on a
rectangular domain. In cases where the shape of the domain is irregular and complex, the supports
of tensor product basis functions may not partition the domain appropriately. As a remedy for this, a
nonparametric regression method based on triangulation, which efficiently partitions the domain using
triangles, has been developed. Barycentric coordinates functions defined with respect to the resulting
triangles form a basis for a space of piecewise polynomial functions over triangulation. For details
concerning the triangulation and the barycentric coordinates basis functions, one may refer to Mark
Hansen and Sardy (1998); Lai and Schumaker (2007); Jhong et al. (2022) and the references cited
therein.

Striking a good balance between bias and variance is a fundamental issue in nonparametric estima-
tion. In the triogram regression model, this comes down to choosing the optimal number and location
of the vertices of the triangulation. Ideally, vertices should be densely placed in regions with high
local fluctuation in the regression function, while regions with smooth variations should have fewer
vertices. If an appropriate triangular partition can be obtained, the estimator can capture the local
trends in the data without compromising the overall smoothness. To this end, Mark Hansen and Sardy
(1998) considered stepwise selection of vertices with the use of the Rao (score) statistic for addition
and the Wald statistic for deletion. Koenker and Mizera (2004) used total variation-type penalty in the
quantile regression framework. In a similar vein, Jhong et al. (2022) introduced a sparsity-inducing
roughness penalty in the mean regression problem and studied the asymptotic properties of the related
estimators.

In this study, we investigate the logistic regression model based on sparse triangulation of the
compact domain in R2. Despite the promising possibility, there is very little research extending the
triogram model to logistic regression. One practical reason is that a large number of vertices can
compromise the stability of the algorithm, making it challenging to model complex relationships ef-
fectively. To address this issue, we introduce sparsity to the boundary vertices of the triangulation
based on the Ramer-Douglas-Peucker (RDP) algorithm (Douglas and Peucker, 1973; Ramer, 1972),
and employ the K-means algorithm to initialize the interior vertices in a data-adaptive way. Addi-
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Figure 1: The values b123
1 (x), b123

2 (x), b123
3 (x) are the relative areas of the green, blue, red triangle with respect to

the area of the triangle determined by {v1, v2, v3}.

tionally, we adopt the coordinate descent algorithm to enhance the stability of the implementation
strategy. We validate the stability of the proposed algorithm and assess the performance of the esti-
mates through the application of synthetic data and handwritten digit data (LeCun et al., 1989). The
results illustrate that our method offers advantages compared to existing methodologies when the data
is observed in a non-rectangular domain.

The rest of the paper is organized as follows. Section 2 reviews the basics of the triangulation and
the associated barycentric coordinates basis functions, and defines the logistic regression estimator.
Section 3 describes the implementation scheme including the proposed triangulation process and co-
ordinate descent algorithm. A numerical study including simulation and analysis of the digit data is
presented in Section 4. Section 5 summarizes the findings of this study and presents discussion about
possible generalizations of the results.

2. Background and problem set-up

2.1. Preliminaries

This section introduces the concepts of triangulation and tent spline basis, and defines the notations
used throughout the paper. For details concerning the triangulation and the corresponding spline space,
one may refer to Stone (1994), Mark Hansen and Sardy (1998), Koenker and Mizera (2004), Jhong et
al. (2022), and Lai and Schumaker (2007).

Let Ω be a compact region in R2. Let T be a triangle that is the convex hull of three points not
located in one line. A collection 4 = {T1, . . . ,Tg} of triangles in the plane with a disjointed interior
is called a triangulation of Ω =

⋃
T∈4 T . We consider the space of continuous linear splines over a

given triangulation 4. The linear tent spline basis functions {B j}
J
j=1 can be defined in terms of the

barycentric coordinates functions of the triangles over 4 with the dimension J be the number of
vertices. Specifically, given as vertex set {v1, . . . , vJ} in the triangulation 4, basis functions are defined
as

B j(x) =

 bTx
j (x), if x ∈ star

(
v j

)
0, otherwise

for j = 1, . . . , J, where Tx is the triangle containing x and star(v j) is the set of all triangles that share
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the vertex v j. Here, bTx
j (·) is the barycentric coordinates function with respect to triangle Tx. The

barycentric coordinates function is illustrated in Figure 1.
Upon obtaining the basis functions, any continuous piecewise linear function is expressed as

sb(x) =

J∑
j=1

b jB j(x) for b ∈ RJ . (2.1)

The {B j}
J
j=1 are linearly independent since B j(vk) = 1 for j = k and B j(vk) = 0 otherwise for vertices

{vk}
J
k=1. By defining a basis through tent splines defined by barycentric coordinates, an effective fitting

of nonparametric regression model is possible for the given arbitrary triangulation of the data domain.
This can significantly improve estimation accuracy, especially when the shape of the domain is com-
plex and irregular, and when the sample size is small, as will be illustrated in the numerical study of
Section 4.

2.2. Model and estimator

Logistic regression model is introduced to deal with the binary classification problem in which the
response variable Y takes on a binary value of 0 or 1. Given the predictors X = x, the conditional
distribution of Y |X = x is assumed to follow the Bernoulli distribution with probability p(x) for
x ∈ Ω ⊂ R2.

The probability function p is modeled by a set of tent spline basis functions {B j}
J
j=1. For b =

(b1, . . . , bJ) ∈ RJ , we denote

pb(x) = σ

 J∑
j=1

b jB j(x)

 ,
where

σ(z) =
1

1 + e−z for z ∈ R

denotes the logistic function.
Suppose that we are given a set of data {(xi, yi)}ni=1, where xi ∈ Ω, yi ∈ {0, 1}. We define the

log-likelihood function as

`(b) =

n∑
i=1

[
yibT B(xi) − log

(
1 + ebT B(xi)

)]
, (2.2)

where B(xi) = (B1(xi), . . . , BJ(xi)) ∈ RJ . The maximum likelihood estimator is defined as

β̂ = arg max
b∈RJ

`(b).

The sparse triogram probability estimator (STriPE) of p is given by

p̂ = pβ̂.
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Figure 2: The plots represent the contour plots of three example functions and the domain of those functions.

3. Implementation scheme

3.1. Coordinate descent algorithm

This section summarizes the algorithm for fitting logistic regression based on a given triangula-
tion. We first consider the standard Newton-Raphson algorithm for the logistic regression model.
Let ` : Ω → R be an objective function to minimize. A maximization problem can be reformu-
lated as a minimization problem by taking the negative of the objective function. Thus, the negative
log-likelihood S (b) is defined as follows

S (b) = −`(b) = −

n∑
i=1

[
yibT B(xi) − log

(
1 + ebT B(xi)

)]
.

The gradient vector is given by

∇S (b) =

n∑
i=1

[
σ

(
bT B(xi)

)
− yi

]
B(xi). (3.1)

The Hessian matrix is given by

∇2S (b) =

n∑
i=1

σ
(
bT B(xi)

) (
1 − σ

(
bT B(xi)

))
B(xi)B(xi)T . (3.2)

The iterative update formula of the pure Newton-Raphson algorithm is given by

β̃k+1 = β̃k −
(
∇2S (β̃k)

)−1
∇S (β̃k) for k = 0, 1, . . . .

The algorithm summarized above is outlined in Mark Hansen and Sardy (1998). However, this
algorithm may exhibit some instability in practical applications. As the dimension of the spline space
increases, the area of the triangle narrows, leading to convergence issues in the algorithm. The poor
condition number of the Gram matrix has led to a decrease in numerical stability. In response to
this issue, we consider the coordinate descent algorithm along with the initialization strategy to be
described in the next subsection. We use the Taylor second-order approximation of the univariate
objective function and employ it to obtain an update formula. We now consider the coordinate-wise
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Figure 3: Plot of the example 1, 2, and 3 via initial triangulation based on the vertices determined by the convex
hull algorithm (top) and the RDP algorithm (bottom).

optimization algorithm. Since initial value of coefficients be β̃ = (β̃0, . . . , β̃0), we have the univariate
objective function for the jth coefficient as follows,

S j

(
b j

)
= S

(
β̃0, . . . , β̃ j−1, b j, β̃ j+1, . . . , β̃p

)
.

The univariate objective function is approximated

q j

(
b j

)
= −`

(
β̃
)

+ S
′

j

(
β̃ j

) (
b j − β̃ j

)
+

1
2

S
′′

j

(
β̃ j

) (
b j − β̃ j

)2
.

To obtain the closed-form solution for the minimizer, we differentiate the above expression as
follows,

q
′

j

(
b j

)
= S

′

j

(
β̃ j

)
+ S

′′

j

(
β̃ j

) (
b j − β̃

)
.

Setting the equation equal to zero, we derive the minimizer

b j = β̃ j −
S
′

j(β̃ j)

S ′′j (β̃ j)
.

The jth element of ∇S (β̃) and the ( j, j)th element of ∇2S (β̃) represent S
′

j(β̃ j) and S
′′

j (β̃ j) respectively.
Therefore, we obtain the following update formula

β̃ j ← β̃ j − η
∇S (β̃) j

∇2S (β̃) j j
, (3.3)
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where η is an appropriately chosen step size.

3.2. Initial triangulation with Ramer–Douglas–Peucker and K-means algorithm

The RDP algorithm (Douglas and Peucker, 1973; Ramer, 1972), an effective method for polyline
simplification, plays a crucial role in the reduction of vertices in a given linear path or polygon while
preserving its overall shape. RDP algorithm operates on the principle of recursive division of the
line, starting with an ordered set of points or lines and a specified distance threshold, ε, greater than
zero. At the outset, the algorithm encompasses all points between the initial and final points of the
curve, designating these terminal points as retained. It then identifies the points most distant from the
line segment defined by these terminal points. This point, being the furthest on the curve from the
approximating line segment, is critical for assessing the necessity of vertex retention. If this point’s
distance from the line segment is less than ε, it implies that the curve can be simplified without
significantly deviating from the original shape by discarding any points not marked for retention.

The numerical instability of the triogram method arises primarily when the number of vertices
is large. There are several approaches to mitigate this issue and improve estimation accuracy at the
same time. Koenker and Mizera (2004) advocated for `2 regularization, while Jhong et al. (2022)
introduced a total variation type penalty to induce sparsity. Mark Hansen and Sardy (1998) proposed
using Rao-Wald statistics for stepwise selection of vertices. However, these approaches primarily
address regularization and adaptation at interior vertices, rather than resolving the instability stemming
from an increase in boundary vertices. Therefore, particularly in logistic regression where algorithms
tend to exhibit instability, having a large number of vertices does not ensure sufficient stability.

As a remedy, we adopt the RDP algorithm to impose sparsity on the boundary vertices. Previous
studies have utilized the convex hull algorithm proposed by Eddy (1977) for initial triangulation; see,
for example, Jhong et al. (2022) and Toussaint and Avis (1982). This algorithm is employed to find
the minimum convex polygon for a given set of points, which often results in the generation of a
large number of somewhat redundant boundary vertices. This dense representation of the boundary
can cause instability of the optimization algorithm. If a large number of vertices are selected using
the convex hull algorithm, adjusting the number of internal vertices does not significantly improve
numerical performance. This is where the RDP algorithm has an advantage because it allows for a
sparse representation of the boundary.

Since we are dealing with two-dimensional data, researchers can visually assess whether sparse
triangulation is suitable for the given data. It seems sufficient to evaluate the adequacy by comparing
sparse representations with the visualization of the data’s shape and convex hull. Although the sparsity
parameter ε for the RDP algorithm can be tuned based on standard validation methods, we find that
the choice of ε does not have a significant impact on practical performance as long as it stays within
a reasonable range. We recommend choosing ε to be a value in {0.01, 0.05, 0.1} with some validation
techniques if required.

3.3. Selection of interior centroids with K-means algorithm

We adopt the K-means algorithm (MacQueen, 1967) to determine the number and location of interior
vertices in a data-adaptive way. The K-means algorithm groups data into clusters and enables the use
of each group’s center as interior vertices in the triangulation process. This ensures that triangulation
can be formed in areas with a large amount of data and significant variation.

In the triangulation process, K is the tuning parameter of the K-means algorithm, which represents
the number of interior vertices. The choice of K has a significant impact on the performance of the
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proposed method. We choose optimal K via the following Bayesian information criterion (BIC) to
ensure that it is an appropriate value based on the data:

BIC = J log(n) − 2`(b),

where J represents total number of vertices and `(b) represents (2.2). Here, J is determined by sum of
K and the number of boundary vertices.

Through numerical experiments, we confirmed that the triangulation strategy, combined with
the coordinate descent algorithm presented in Section 3.1, significantly enhances numerical stabil-
ity and estimation accuracy. The proposed algorithm was implemented using R software, employing
the grDevices, stats, and RDP packages. The overall implementation algorithm is summarized in
Algorithm 1 below.

Algorithm 1 : Implementation algorithm for STriPE

1: Input: x : predictors ∈ Rn×2,
ε : threshold,
K : number of interior vertices,
J : total number of vertices,
η : step size,
δ : tolerance,
max iter : maximum iterations

2: Function: Use function: grDevices.chull(),
stats.kmeans(),
RDP.RamerDouglasPeucker()

3: Initial triangulation:
4: Compute the boundary vertices:

vertex chull = chull(x)
vertex simpli f ied = RamerDouglasPeucker(vertex chull[, 1], vertex chull[, 2], ε)

5: Choose K using BIC statistic
6: Compute the interior vertices:

interior centroids = kmeans(x, K)
7: Combine boundary vertices and interior centroids
8: Compute the design matrix G ∈ Rn×J

9: Coefficient initialization: β̃ = β̃old = (1, . . . , 1) ∈ RJ

10: while diff > δ and iteration < max iter do
11: β̃old = β̃
12: for j = 1 to J do
13: Compute the gradient ∇S (β̃ j) using (3.1)
14: Compute the Hessian ∇2S (β̃ j) using (3.2)

15: Update β̃ j ← β̃ j − η
∇S (β̃) j

∇2S (β̃) j j
using (3.3)

16: end for
17: diff = ‖β̃ − β̃old‖

18: end while
19: Output: β̃



Nonparametric logistic regression based on sparse triangulation 565

Table 1: The average MSE values and the standard errors (in parentheses) of STriPE, TPS, CS, and KLR with
50 replicated simulations

Example 1
Sample Size STriPE(se) TPS(se) CS(se) KLR(se)
n = 100 0.0160(0.0013) 0.0345(0.0048) 0.0355(0.0053) 0.0425(0.0059)
n = 200 0.0061(0.0004) 0.0305(0.0011) 0.0116(0.0012) 0.0281(0.0028)
n = 300 0.0051(0.0004) 0.0073(0.0004) 0.0069(0.0004) 0.0221(0.0015)
n = 400 0.0036(0.0002) 0.0057(0.0002) 0.0056(0.0002) 0.0198(0.0011)
n = 500 0.0032(0.0002) 0.0046(0.0002) 0.0043(0.0002) 0.0177(0.0014)

Example 2
Sample Size STriPE(se) TPS(se) CS(se) KLR(se)
n = 100 0.0247(0.0014) 0.0377(0.0043) 0.0400(0.0050) 0.0916(0.0020)
n = 200 0.0129(0.0005) 0.0160(0.0009) 0.0150(0.0007) 0.0890(0.0012)
n = 300 0.0112(0.0004) 0.0121(0.0005) 0.0124(0.0005) 0.0900(0.0011)
n = 400 0.0090(0.0003) 0.0098(0.0003) 0.0099(0.0003) 0.0877(0.0009)
n = 500 0.0087(0.0002) 0.0092(0.0004) 0.0091(0.0003) 0.0891(0.0010)

Example 3
Sample Size STriPE(se) TPS(se) CS(se) KLR(se)
n = 100 0.0122(0.0011) 0.0287(0.0045) 0.0271(0.0043) 0.0180(0.0007)
n = 200 0.0055(0.0004) 0.0062(0.0006) 0.0067(0.0009) 0.0154(0.0003)
n = 300 0.0047(0.0003) 0.0047(0.0004) 0.0050(0.0005) 0.0146(0.0002)
n = 400 0.0030(0.0002) 0.0033(0.0003) 0.0034(0.0003) 0.0143(0.0001)
n = 500 0.0026(0.0001) 0.0026(0.0001) 0.0026(0.0002) 0.0141(0.0001)

In bold, best row-wise.

4. Numerical studies

4.1. Simulation study

This section illustrates the advantages of the proposed method based on simulation studies. We con-
sider three probability functions defined on non-rectangular domains. Each function is defined as a
logistic transformation of a linear combination of basis functions defined on a triangulation obtained
by adding 1, 3, and 2 interior vertices to pre-specified boundary vertices, respectively. The contour
plots of the example functions and the domain areas can be seen in Figure 2.

We randomly generated x1, . . . , xn in this domain and applied the proposed triangulation strategy.
The ε parameter of the RDP algorithm is adjusted to 0.05 for all three examples. In Figure 3, three plots
in the top row represent the triangulation obtained from the standard convex hull algorithm. It is seen
that each example has a total of 21, 24, and 14 vertices, respectively. Although the number of interior
vertices is determined as K = 1, 3, and 2, respectively, for three examples, a dense basis representation
is obtained because some of the boundary vertices are redundant, which causes a detrimental effect
on the stability of the algorithm. On the other hand, the plots in the bottom row depict the result of
applying the RDP algorithm, yielding a sparse representation through 7, 10, and 7 vertices with the
regions closely resembling the true function’s domain. This significantly stabilizes the optimization
algorithm.

We consider sample sizes of n = 100, 200, 300, 400 and 500. Through 50 replicates, we record the
mean squared error (MSE) obtained by making predictions on randomly selected points. The MSE is
defined as

MSE( p̂) =
1

1000

1000∑
s=1

(p(ts) − p̂(ts))2 ,
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Figure 4: Left panel presents a plot of the training data and the initial vertices. The red dots and blue dots represent
Digit 8 and Digit 7, respectively, while the black diamonds represent the initial vertices. The right plot shows the

initial triangulation determined by the initial vertices.

where ts represents randomly selected points, independent of the training data, in Ω. To illustrate the
performance, we compared the proposed method with the thin plate regression (Wood, 2003), cu-
bic spline (De Boor, 1978) and kernel logistic regression (Zhu and Hastie, 2005). The selection of
knots for implementing the cubic spline (CS) method was based on the quantile values of observa-
tions, while the hyperparameters of the kernel logistic regression (KLR) method were determined by
the cross-validation. The average MSE values and standard errors for the STriPE method, thin plate
spline (TPS) method, CS method, and KLR are summarized in Table 1, with the smallest MSE in
boldface. Numerical results confirm that the proposed method exhibits superior performance. While
the difference in MSE values between the proposed method and other methods tends to decrease
as the sample size increases, we still observe that our method outperforms others, with particularly
significant differences occurring in small samples.

4.2. Digit data analysis

We apply our method to analyze the handwritten zip code database presented in LeCun et al. (1989).
We use features “intensity” and “symmetry” for this analysis. Intensity represents the count of black
pixels in the images, and symmetry represents how closely a character resembles its specular image.
We choose digits 7 and 8. Out of a total of 1187 training observations, we exclude outliers, resulting
in the use of 1184 training observations. Test observations consist of 313. The class label y is set to 0
for digit 7 and 1 for digit 8. Intensity is considered as the predictor variable x1, and symmetry is used
as the predictor variable x2.

In the left panel of Figure 4, we observe that the data is not distributed in a rectangular shape. We
obtained an initial triangulation using the proposed initialization strategy. The user-defined parameter
ε for the RDP algorithm was tuned to 0.01, and the number of centroids in the K-means algorithm was
tuned to 3. This approach determines 10 boundary vertices and 3 interior vertices. In the left panel
of Figure 4, the red dots and blue dots represent Digit 8 and Digit 7, respectively, while the black
diamonds represent the vertices. We can observe that the three interior vertices are positioned at the
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Figure 5: Plot of the training data (left) and test data (right) along with the decision boundary (black solid line).

boundary of the data, indicating their importance in forming the decision boundary. The right panel
of Figure 4 visualizes the triangulation obtained using the given vertices.

For x = (x1, x2) ∈ Ω, we compute p̂(x). If p̂(x) is greater than 0.5, we predict y as 1 and otherwise,
we predict y as 0. The decision boundary where p̂(x) becomes 0.5 is depicted as a black line in both
plots in Figure 5. The calculated in-sample accuracy from the training data is 0.8472, and the out-of-
sample accuracy computed from the test data is 0.8233. For comparison, fitting a logistic model using
thin plate spline, cubic spline and kernel logistic regression resulted in an out-of-sample accuracy of
0.81, 0.8066, 0.7866, respectively. Figure 5 visualizes the training and test data along with the decision
boundary. The result implies that there is a tendency for intensity to decrease as symmetry increases
for both digit 7 and digit 8. Symmetry is a factor that determines the classification of digit data. Digit
8 is greater than digit 7 in terms of the symmetry, and the region of digit 8 is formed on the right side
of the decision boundary.

5. Concluding remarks

This paper proposed a multivariate nonparametric logistic regression method based on the sparse tri-
angulation within a compact domain in R2. Sparsity on the boundary vertices of the triangulation was
imposed by applying the RDP algorithm to the initial vertices obtained by the convex hull algorithm.
The complexity of estimation methods was controlled by the ε of the RDP algorithm and the num-
ber of centroids K in the K-means algorithm used to obtain the data-dependent interior vertices. This
strategy combined with the coordinate descent algorithm helps stabilize the convergence property of
the implementation algorithm. The performance of the proposed method was investigated using the
synthetic and handwritten digit data. Results illustrate that the proposed method outperforms existing
methods when the data is observed on non-rectangular domains.

The results of this paper are expected to provide a foundation for further research. They can be
generalized and extended in a few ways. First, we can extend the method to the case of p-dimensional
predictors where p > 2. To our knowledge, there has been no research applying spline methodology
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based on barycentric coordinates to nonparametric function estimation problems for p > 2. It is
expected that by efficiently partitioning the domain using simplices and the associated spline basis,
one can significantly improve the efficiency of nonparametric function estimation methods.

Second, we can consider combining the proposed methodology with sparsity-inducing penaliza-
tion. In Jhong et al. (2022), a method for automatically selecting the number of vertices in triangulation-
based regression problems using a total-variation type penalty was proposed. Building on this, we
can develop a penalization method within the generalized linear model framework for choosing the
number of vertices in a data-adaptive way after placing a sufficient number of vertices to ensure the
flexibility of the model.
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