References
- Alacali, S.N., Akbas, B. and Doran, B. (2011), "Prediction of lateral confinement coefficient in reinforced concrete columns using neural network simulation", Appl. Soft Comput., 11(2), 2645-2655. https://doi.org/10.1016/j.asoc.2010.10.013
- Alavi, A.H. and Gandomi, A.H. (2011), "Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing", Comput. Struct., 89(23-24), 2176-2194. https://doi.org/10.1016/j.compstruc.2011.08.019
- Arafa, M., Alqedra, M. and Najjar, H.A. (2011), "Neural network models for predicting shear strength of reinforced normal and high-strength concrete deep beams", J. Appl. Sci., 11(2), 266-274. https://doi.org/10.3923/jas.2011.266.274
- Attoh Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate Adaptive Regression (MARS) and Hinged Hyperplanes (HHP) for Doweled Pavement Performance Modeling", Constr. Build. Mater., 23, 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010
- Caglar, N. (2009), "Neural network based approach for determining the shear strength of circular reinforced concrete columns", Constr. Build. Mater., 23(10), 3225-3232. https://doi.org/10.1016/j.conbuildmat.2009.06.002
- Chua, C.G. (2001), "Prediction of the behavior of braced excavation systems using Bayesian neural networks", Master Thesis, Nanyang Technological University, Singapore.
- Chua, C.G. and Goh, A.T.C. (2003), "A hybrid Bayesian back-propagation neural network approach to multivariate modeling", Int. J. Numer. Anal. Meter., 27, 651-667. https://doi.org/10.1002/nag.291
- Chuang, P.H., Goh, A.T.C. and Wu, X. (1998), "Modeling the capacity of pin-ended slender reinforced concrete columns using neural networks", J. Struct. Eng., 124(7), 830-838. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(830)
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19, 1-141. https://doi.org/10.1214/aos/1176347963
- Gandomi, A.H., Alavi, A.H., Kazemi, S., Alinia, M.M. (2009). "Behavior appraisal of steel semi-rigid joints using linear genetic programming", J. Constr. Steel Res., 65, 1738-1750. https://doi.org/10.1016/j.jcsr.2009.04.010
- Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H., (2013), Metaheuristic Applications in Structures and Infrastructures, Elsevier, Waltham, MA, USA.
- Goh, A.T.C. (1995), "Neural networks to predict shear strength of deep beams", ACI Struct. J., 92(1), 28-32.
- Goh, A.T.C. and Chua, C.G. (2004), "Nonlinear modeling with confidence estimation using Bayesian neural networks", Elect. J. Struct. Eng., 1, 108-118.
- Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10. https://doi.org/10.1016/j.enggeo.2013.12.003
- Gulec, C.K. (2009), "Performance-based assessment and design of squat reinforced concrete shear walls", Ph.D. Thesis, the State University of New York at Buffalo.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd Edition, Springer.
- Jekabsons, G. (2011), ARESLab: Adaptive Regression Splines toolbox for Matlab / Octave, Available at http://www.cs.rtu.lv/jekabsons/
- Jenkins, W.M. (2006), "Neural network weight training by mutation", Comput. Struct., 84(31-32), 2107-2112. https://doi.org/10.1016/j.compstruc.2006.08.066
- Lashkari, A. (2012), "Prediction of the shaft resistance of nondisplacement piles in sand", Int. J. Numer. Anal. Meter. 37, 904-931.
- Mackay, D.J.C. (1991), "Bayesian methods for adaptive models", Ph.D. Thesis, California Institute of Technology.
- Mirzahosseini, M., Aghaeifar, A., Alavi, A., Gandomi, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert Syst. Appl., 38(5), 6081-6100. https://doi.org/10.1016/j.eswa.2010.11.002
- Neal, R.M. (1992), "Bayesian training of back-propagation networks by the hybrid Monte Carlo method", Technical report CRG-TG-92-1, Department of Computer Science, University of Toronto, Canada.
- Oreta, A.W.C. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554)
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning internal representations by error propagation", Parallel Distributed Processing, Eds. D.E. Rumelhart & J.L. McClelland, MIT Press, Cambridge, MA.
- Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: a multivariate adaptive regression spline approach", Int. J. Numer. Anal. Meter., 36, 1434-1439.
- Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay", IJAMC, 3(2), 33-42.
- Samui, P., Das, S. and Kim, D. (2011), "Uplift capacity of suction caisson in clay using multivariate adaptive regression spline", Ocean Eng., 38, 2123-2127. https://doi.org/10.1016/j.oceaneng.2011.09.036
- Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks", J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
- Tsai, H.C. (2010), "Hybrid high order neural networks", Appl. Soft Comput., 9, 874-881.
- Tsai, H.C. (2011), "Using weighted genetic programming to program squat wall strengths and tune associated formulas", Eng. Appl. Artif. Intel., 24, 526-533. https://doi.org/10.1016/j.engappai.2010.08.010
- Yang, K.H., Ashour, A.F., Song, J.K. and Lee, E.T. (2008), "Neural network modeling of RC deep beam shear strength", Struct. Build., 161(1), 29-39. https://doi.org/10.1680/stbu.2008.161.1.29
- Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., 3(4), 291-321. https://doi.org/10.12989/gae.2011.3.4.291
- Zhang, W. G. and Goh, A. T. C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016
- Zhang, W.G. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., 7(4), 431-458. https://doi.org/10.12989/gae.2014.7.4.431
- Zhang, W.G., Goh, A.T.C., Zhang, Y.M., Chen, Y.M. and Xiao, Y. (2015), "Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines", Eng. Geol., 188, 29-37. https://doi.org/10.1016/j.enggeo.2015.01.009
Cited by
- MARS inverse analysis of soil and wall properties for braced excavations in clays vol.16, pp.6, 2015, https://doi.org/10.12989/gae.2018.16.6.577
- GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading vol.25, pp.1, 2015, https://doi.org/10.12989/cac.2020.25.1.001