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Abstract 

 

In this article, it will be shown that a 

nonparametric and data-adaptive approach to the 

variance change point (VCP) detection problem is 

possible by formulating it as a pattern classification 

problem. Technical aspects of the VCP detector are 

discussed, which include its training strategy and 

selection of proper classification tool. 
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1. Introduction 
 

The problem of testing the parameter 

constancy of a time series has received considerable 

attention from researchers; see, for example, Bagshaw 

and Johnson (1997), Picard (1985), Kramer et al. 

(1998), Tang and MacNeil (1993) and papers therein. 

In particular, the volatility constancy problem has been 

an active research area since it was realized that many 

time series could be understood and predicted much 

better by analyzing their volatility. For examples of 

these kinds, see Engel (1982) for economic time series 

models with conditional heteroscedastic errors, Baufays 

and Rasson (1985) for modeling stock returns, and Kim 

et al. (2004) for an early warning system against 

economic crisis.   In this context, detection of 

variance change point (VCP) has attracted much 

attention these days. Though the VCP detectors could 

be easily constructed by a single test statistic such as 

variance ratio type estimator, usually it is not easy to 

establish a nonparametric or data-adaptive detector 

since theoretical verification of such detector against 

various underlying stochastic processes is particularly 

difficult. In this article, it will be demonstrated that 

many technical breakthroughs of the VCP detection 

problem are possible by formulating it as a pattern 

classification problem. Formally, the VCP problem is 

stated as follows: 

 

 

Suppose that , , ... ,1 2X X Xn  is a sequence of time 

series data, and let   

 

( )1
1

( )

Var Xi
i

Var Xi

α+
= +

      for 1, 2, , 1i n= −K  (1) 

 

Then, a sequence , , ... ,1 2X X Xn  is said to experience 

a volatility change of size αν  at VCP ν  if 1αν ≠ . 

                                                              

See Figure 1(a) which depicts time series data 

experiencing various volatility changes periodically. A 

typical approach to VCP detection is to employ a 

proper single test statistic for ν  (e.g., variance ratio 

type estimator) and then provide theoretical 

justification for its practical applications. Through this 

approach, however, it is not easy to find a 

nonparametric or data-adaptive statistical solution since 

theoretical verifications of a single test statistic against 

various time series models including nonlinear or non-

stationary autoregressive processes are particularly 

difficult. For example, CUSUM (cumulative sum) of 

squares defined by  

 

2

1

, 2

1

k
X j kj

V nk n
nX j

j

∑
=

= −

∑
=

  for  1 k n≤ ≤   (2) 

 

has been investigated as a proper test statistic for ν  

since a sudden shape change of 
,Vk n

 may indicate an 

existence of variance change (see Figure 1(b)). 
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However, its theoretical justification often turns out 

quite tough due to the fractional structure of 
,

V
k n

 

entangled with the assumed time series model. For 

example, Lee and Park (2001) consider an infinite order 

moving average model to verify that 
,

V
k n

 converges 

to a standard Brownian bridge. These kinds of 

justifications for 
,

V
k n

 are still needed for other 

popular time series models (e.g., nonlinear or non-

stationary AR) for its wide practical applications. 
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(b) ,Vk n  
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Figure 1. Time plots plots for Xi

 and its 
,

V
k n

 when 

241 721 1201 1681 21614, 4, 9, 16, 25α α α α α= = = = =
 

 

The main goal of this paper is to show that a 

nonparametric or data-adaptive detector could be 

obtained if the VCP detection problem is formulated as 

a pattern classification problem. This is based on the 

observation that volatility change always causes an 

abrupt change at or around ν  (VCP) in movements 

of time series or related statistics such as ,k nV
 so that 

one can easily distinguish “a brief transition period 

containing ν ” from an other stable period (see Figure 

1(a)). Of course, successful formulation presupposes a 

proper training dataset containing a VCP and usually it 

is not difficult to obtain such dataset from the past of 

the given time series.  

This paper consists of four sections. Section 2 

is devoted to the formulation of VCP detection as 

pattern classification. Section 3 discusses technical 

aspects of the detector as a pattern classifier including 

training strategy and selection of appropriate classifier. 

Some simulation results are given in that section to 

examine the discussed technical aspects of the detector. 

Section 4 contains the concluding remarks. 

 

2. Formulation of VCP Detection as 

Pattern Classification 
 

This section begins with the definition of 

VCP training dataset. Let , , ... ,1 2X X Xn  and 

, , ... ,1( ) 2( ) ( )X X Xt t m t
 be two datasets of size n  and 

m  with volatility change of size αν  and ( )tαν  

respectively, where { 1, 2, , }nν ∈ L  and 

( ) { 1( ), 2( ), , ( ) }t t t m tν ∈ L . A numerical quantity 

subscripted by ( )t  simply denotes that it belongs to 

the training dataset. Then, we have:  

 

Definition. 
1( ) 2( ) ( ), , ... ,t t m tX X X  is a VCP 

training dataset of 
1 2, , ..., nX X X  if the underlying 

probability structure of 
1( ) 2( ) ( ), , ... ,t t m tX X X  is the 

same as that of 
1 2, , ..., nX X X  except for a possible 

different size of volatility change at VCP.  

 

Throughout this section, we assume that a 

VCP training dataset is given and simply refer to it as 

the training dataset. Once the training dataset is given, 

the next step for formulating VCP detection as a pattern 

classification problem is to establish template periods 

for training, i.e. to partition 
1( ) 2( ) ( ), , ... ,t t m tX X X  into 

three periods or patterns: Low volatility period (LP), 

brief transition one containing ( )tν  (TP), and high 

volatility one (HP). This partitioning step is particularly 

critical for successful formulation, which is one of the 

main issues in Section 3 below. For now, let us assume 

an appropriate partition (LP, TP, HP) of the training 

period is found. Let 
nC  be a (pattern) classifier to be 

trained on the partition (LP, TP, HP). Notice that 
nC  

signals volatility change whenever it reaches TP. If the 

training is successful (i.e., the trained 
nC  classifies the 

three periods efficiently on the training dataset), then it 

could be regarded as an empirical verification of 
nC  

against the training dataset. In other words, training 

nC  against the training dataset corresponds to 

verifying test statistic 
nV  against the assumed time 

series model. As stated in the definition of VCP training 

dataset, it is noteworthy that its existence does not 

require any specific underlying time series models.  

That 
nC  is equipped with such empirical 

verification benefits it with many desirable statistical 

properties. First, 
nC  is nonparametric since it is not 

necessary to assume any particular parametric form for 

the underlying structure of , , ... ,1 2X X Xn  for its 

application (recall that , , ... ,1 2X X Xn  is usually 

limited to simple stationary linear time series models 

for practical applications of various 
nV ’s). Second, 

nC  

is data-adaptive since it easily adapts itself through an 

empirical training process. Further, various 
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transformations of training data could be employed as 

input variables for efficient training. The discussions 

above lead to the following claim: 

  

Claim: Variance change point detection of 

, , ... ,1 2X X Xn  could be formulated as a 

nonparametric and data-adaptive pattern classification 

problem if the training on its training data 

, , ... ,
1( ) 2( ) ( )

X X X
t t m t

 is done properly. 

 

 

3. Technical Issues 
 

Given training data 
1( ) 2( ) ( ), , ... ,t t m tX X X  of 

size m , there are two major technical issues regarding 

the training of 
nC : (i) how to construct a partition (LP, 

HP, TP), and (ii) what type of classifier is to be 

employed as a detector. For the first issue, TP is defined 

as  

 

TP={ ( )( ) : , 1, , }j t j p p pν − = − −L      (3) 

 

where 0j =  implies a VCP ( ( )tν ) experiencing 

( ) / ( )( ) ( ) ( 1)( )Var X Var Xt t tαν ν ν= −
. Note that the relative 

length of TP of (3) to the entire training period is given 

by  

 

2 1p
ltp

m

+
=                     (4) 

 

It is easy to see that small tpl  causes training 

inefficiency for TP while large tpl  difficulty in 

distinguishing TP from LP and HP (recall that TP 

contains small segments both from LP and HP 

simultaneously). For 
( )tνα , one may easily expect that 

a large 
( )tνα  would facilitate the classification task 

among HP, LP, and TP. Therefore, tpl  and ( )tνα  are 

two important parameters to be determined for the 

optimal construction of a partition. For the second issue, 

there are many classifiers available from statistical 

machine learning algorithms (1995, 1990). To select a 

proper classifier for the VCP detection problem, careful 

consideration must be given to the unique feature of TP 

(i.e., TP is always characterized by its briefness and 

unusualness) since common classifiers tend to overlook 

TP as outliers, frequently in a standard training 

situation. Hence, either a chosen classifier could be 

adjusted to overfit to such a seemingly abnormal TP 

segment or a classifier having an overfitting tendency 

should be chosen. In this regard, an artificial neural 

network (ANN) might be a desirable tool since its 

overfitting tendency is quite well known for its 

technical drawback to overcome (1998). In addition, it 

is known that an ANN can cover a greater range of 

complexity problems including nonlinearity and non-

stationarity, and is superior in its generality and 

practical ease in implementation due to its powerful and 

flexible capability (1995). In fact, Kim et al. (2004) 

noted the usefulness of an ANN under a similar 

situation to the VCP detection problem. 

 

Some simulations are performed in order to 

examine these technical issues. In this simulation study, 

the following standard autoregressive process is 

considered. 

 

2
1 , 1, 2,1X X a ii iiρ ρ= + − =− K      (5) 

 

where 0.9ρ =  and ai  is an identically and 

independently distributed (i.i.d.) normal error process 

with mean 0  and variance 2
iσ
. The starting value for 

(5) is randomly chosen but to diminish the effect of the 

starting value, the first 50  values from (5) are burned 

or abandoned. Note that Xi  is then normally 

distributed with mean 0  and variance 2
iσ
 and that 

2
iσ
 makes a jump at i ν=  with ratio 

να . In fact, 

various values of ρ  are tried ( 1 1ρ− < < ) in 

simulation but only 0.9ρ =  is presented here since 

other values produce quite similar results. For 

investigation of the first issue, training and test datasets 

with equal size ( 480n m= = ) are generated. More 

precisely, training data 
1( ) 2( ) 480( ), , ... ,t t tX X X  are 

generated with 4, 25
( )t

αν =  (i.e. 2
( )t

σν
 jumps either 

from 1  to 4  or 1  to 25 ) at ( ) 241tν =  and test 

data , , ,1 2 480X X XL  with 4, 9,16, 25αν =  at 

241ν = . Since each value of variance ratio ( α= ) 

corresponds to one simulated dataset, a simulated 

dataset is denoted by it hereafter. Note that there are 

four test datasets ( 4, 9,16, 25αν = ) for each training 

dataset ( 4, 25
( )t

αν = ). For each given training set TP 

defined at (3) is constructed with ( ) 241tν =  and its 

relative length 3%, 5%, 10%, 15%ltp = . Recall that TP 

is defined such that it contains two heterogeneous 

groups of data having unequal variances simultaneously. 

Various input variables based on Xt  are employed to 

extract information in classifying LP, TP and HP. The 

output variable for the detector takes the value of 1, 2,  

and 3 , each representing LP, TP and HP, respectively, 

and signals volatility change whenever it reaches 2 . 

Table 1 provides a list of input variables for the data in 

Figure 1. Some of their time plots are given in Figure 2. 

Now, an ANN whose architecture is given by Figure 3 

is trained on each training data and then tested against 

various testing datasets.  Here backpropagation neural 

network (BPN) is employed with 7 7 1× ×  multi-

layer perceptron, i.e., input layer of 7  nodes, hidden 

layer of 7  nodes, and output layer of 1 node. As an 
activation function, the logistic function is used with 

learning rate, momentum and initial weights given by 

0 .1 , 0 .1  and 0.3 , respectively. Note that each 

ANN trained on 
( ) 4tνα =  and 2 5  separately is 

tested against test datasets in the order of 

4, 9,16, 25αν = . 
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Table 1. List of input variables 

Name Numerical formula Description 

DIFF 
1t t td X X −= −
 

daily 

difference 

MA(5), 
MA(20), 

MA(60) 

 
 

MA 

m -day 
moving 

average 

MV(5), 
MV(20), 

MV(60) 

 
 

MV 

m -day 

moving 
variance 
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(b) MA(5) 
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(c) MV(20) 
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Figure 2. Time plots of some input variables 
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Figure 3. Architecture of the employed ANN 

 

 

In Figure 4 (a) – (d) [Figure 5 (a) – (d)], 

training results for 25
( )t

αν =  [ 4
( )t

αν = ] are given 

first, and then four testing results are given in the order 

of 4, 9,16, 25αν =  for each 

3%, 5%, 10%, 15%ltp =  (recall that ν  and ( )tν  

are fixed as 241 for simulated datasets). Note that 480 

data points are included in each result. In these figures, 

the desired output values are displayed together with 

their predicted output values for training and testing 

evaluation purpose. Careful examination of these 

figures reveals the following: (i) For each 
tpl
, 

n
C  is 

trained better with 25
( )t

αν =  than with 4( )tαν = , 

i.e., 
n

C  with 
( ) 4tνα =  has difficulty in training on 

LP and HP.  (ii) 
n

C  trained with 
( ) 4tνα =  yields a 

better testing result than one trained with 
( ) 25tνα =  

in terms of correct classification hits. Particularly, 
n

C  

trained with 25
( )t

αν =  has obvious problems on 

testing data with 4αν = . (iii) 5%ltp =  yields the 

best testing result with 
( ) 4tνα =  while 3%tpl =  the 

best one with 25
( )t

αν = .  

Each point mentioned above provides quite useful 

information in constructing a template partition (LP, TP, 

HP) of the given training period. First, a VCP detector 

is trained efficiently with large 
( )tνα . It is consistent 

with our intuition that VCP training data with dramatic 

change of variance would be easy to train. Second, a 

VCP detector trained with small 
( )tνα  tends to work 

better. This is due to the fact that small 
( )tνα  may 

much improve the sensitivity of detector. Third, an 

optimal 
tpl
 is related to 

( )tνα  in the way that a small 

( )tνα  favors a rather long 
tpl . It suggests that training 

inefficiency due to small 
( )tνα  could be improved by 

a rather long 
tpl . From these, one may conclude that a 

good VCP detector would be obtained if it is trained 

with small 
( )tνα  and training inefficiency due to such 

small 
( )tνα  may be improved by selecting a rather 

long 
tpl . 

,

( 1)

1
( )

t

m t i

i t m

m d d
m = − −

= = ∑

2

,

( 1)

1
( ) ( )

t

i m t

i t m

m d d
m = − −

= −∑
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(a) tpl = 3% 
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(b) tpl = 5% 
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(c) tpl =10%  
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(d) tpl = 15% 
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Figure 4. ANN for 

( )
25

tνα =  and 4, 9,16, 25να =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) tpl =3% 
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(b) tpl =5% 
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(c) tpl =10% 
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 (d) tpl =15% 

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1

1
0
9

2
1
7

3
2
5

4
3
3

5
4
1

6
4
9

7
5
7

8
6
5

9
7
3

1
0
8
1

1
1
8
9

1
2
9
7

1
4
0
5

1
5
1
3

1
6
2
1

1
7
2
9

1
8
3
7

1
9
4
5

2
0
5
3

2
1
6
1

2
2
6
9

2
3
7
7

Desired

Predicted

 
Figure 5. ANN for 

( ) 4tνα =  and 4, 9,16, 25να =  

 

As mentioned earlier, an ANN is employed 

here as a classification tool since ANN’s major 

drawback, overfitting (1995, 2001), might work 

positively for a VCP detector. Indeed, the overfitting 

tendency of an ANN could be effective for 

concentrating on a very brief and abnormal segment of 

data (i.e., TP is usually a rare and abnormal segment). 

To support these points, an ANN is compared with 

multivariate discriminant analysis (MDA), a well-

known parametric classifier. See Hair et al. (1995) or 

Mclachlan (1992) for detailed discussions of MDA. 

According to the recommendation from early 

simulation results, a simulated data with 
( ) 4tνα =  
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and 4, 9,16, 25να =  is used. Classification results of 

MDA are given in Figure 6 (a) – (d) and show a very 

poor performance except for 15%tpl = . In fact, no 

correct detection of VCP is recorded for 

3%, 5%,10%tpl = , and a rather long 15%tpl =  reports 

some reasonable performance. Comparing these with 

the ANN performances given in Figure 5 clearly 

supports the ANNs superior capability in concentrating 

on brief and abnormal segments of data, which is a 

quite desirable strength as a VCP detector. 

 

(a) tpl = 3%  
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(b) tpl = 5% 
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(c) tpl =10% 
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(d) tpl = 15% 
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Figure 6.  MDA for 

( ) 4tνα =  and 

4, 9,16, 25να =  

 

4. Concluding Remarks 
 

This article shows that the VCP detection 

problem could be formulated as a pattern classification 

problem. Such formulation deserves much attention 

since it could bring many technical breakthroughs to 

the VCP detection problem. Indeed, a nonparametric 

and data-adaptive approach to the VCP problem could 

be easily established whereas it is difficult for the 

classical approach based on single test statistics. 

Furthermore, one may utilize various features of time 

series movement at a VCP as input variables, which 

often greatly enhances the performance of a detector. 

Discussions about training strategy and 

selection of proper classifier reveal various interesting 

aspects of the detector. An ANN is recommended as an 

appropriate tool since its well-known overfitting 

tendency could work positively for VCP detection. That 

a good VCP detector could be trained with a relatively 

small jump of variance (small 
( )tνα ) over a rather long 

transition period (large 
tpl ) addresses basic issues for 

the selection of critical parameters in the VCP detection 

problem. 
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