Acknowledgement
This research was supported by National Research Foundation (NRF) of Korea, RS-2022-00165581.
References
- Bak K-Y, Jhong J-H, Lee JJ, Shin J-K, and Koo J-Y (2021). Penalized logspline density estimation using total variation penalty, Computational Statistics & Data Analysis, 153, 107060.
- De Boor C (1978). A practical guide to splines, 27, springer-verlag New York.
- Douglas DH and Peucker TK (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Cartographica: The International Journal for Geographic Information and Geovisualization, 10, 112-122.
- Eddy WF (1977). A new convex hull algorithm for planar sets, ACM Transactions on Mathematical Software (TOMS), 3, 398-403.
- Ferraccioli F, Arnone E, Finos L, Ramsay JO, and Sangalli LM (2021). Nonparametric density estimation over complicated domains, Journal of the Royal Statistical Society Series B: Statistical Methodology, 83, 346-368.
- Geenens G (2021). Mellin-Meijer kernel density estimation on R+, Annals of the Institute of Statistical Mathematics, 73, 953-977.
- Hastie T, Tibshirani R, Friedman JH, and Friedman JH (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2, Springer, Berlin.
- Jhong J-H, Bak K-Y, and Koo J-Y (2022). Penalized polygram regression, Journal of the Korean Statistical Society, 51, 1161-1192.
- Koenker R and Mizera I (2004). Penalized triograms: Total variation regularization for bivariate smoothing, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 145-163.
- Lai M-J and Schumaker LL (2007). Spline Functions on Triangulations, Cambridge University Press, Cambridge.
- Lai M-J and Wang Li (2013). Bivariate penalized splines for regression, Statistica Sinica, 23, 1399-1417.
- LeCun Y, Boser B, Denker J, Henderson D, Howard R, HubbardW, and Jackel L (1989). Handwritten digit recognition with a back-propagation network, Advances in Neural Information Processing Systems, 2,
- MacQueen J (1967). Some methods for classification and analysis of multivariate observations, In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 281-297. Oakland, CA, USA.
- Mark Hansen CK and Sardy S (1998). Triogram models, Journal of the American Statistical Association, 93, 101-119.
- Muller H-G (1991). Smooth optimum kernel estimators near endpoints, Biometrika, 78, 521-530.
- Nelder JA and Wedderburn RW (1972). Generalized linear models, Journal of the Royal Statistical Society Series A: Statistics in Society, 135, 370-384.
- Ramer U (1972). An iterative procedure for the polygonal approximation of plane curves, Computer Graphics and Image Processing, 1, 244-256.
- Ramsay T (2002). Spline smoothing over difficult regions, Journal of the Royal Statistical Society Series B: Statistical Methodology, 64, 307-319.
- Sangalli LM, Ramsay JO, and Ramsay TO (2013). Spatial spline regression models, Journal of the Royal Statistical Society Series B: Statistical Methodology, 75, 681-703.
- Scott-Hayward LAS, MacKenzie ML, Donovan CR, Walker C, and Ashe E (2014). Complex region spatial smoother (cress), Journal of Computational and Graphical Statistics, 23, 340-360.
- Stone CJ (1994). The use of polynomial splines and their tensor products in multivariate function estimation, The Annals of Statistics, 22, 118-171.
- Toussaint GT and Avis D (1982). On a convex hull algorithm for polygons and its application to triangulation problems, Pattern Recognition, 15, 23-29.
- Tsybakov AB (2008). Introduction to Nonparametric Estimation, 1st edition, Springer Publishing Company, Incorporated, Berlin.
- Wang H and Ranalli MG (2007). Low-rank smoothing splines on complicated domains, Biometrics, 63, 209-217.
- Wang R, Ramos D, and Fierrez J (2012). Improving radial triangulation-based forensic palmprint recognition according to point pattern comparison by relaxation. In 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, 427-432. IEEE.
- Wasserman L (2006). All of Nonparametric Statistics, Springer Science & Business Media, Berlin.
- Wood SN (2003). Thin plate regression splines, Journal of the Royal Statistical Society Series B: Statistical Methodology, 65, 95-114.
- Wright GA and Zabin SM (1994). Nonparametric density estimation for classes of positive random variables, IEEE Transactions on Information Theory, 40, 1513-1535.
- Zhu J and Hastie T (2005). Kernel logistic regression and the import vector machine, Journal of Computational and Graphical Statistics, 14, 185-205.