• Title/Summary/Keyword: Nonlinear wave equations

Search Result 169, Processing Time 0.026 seconds

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

NEW EXACT TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Lee, Youho;An, Jaeyoung;Lee, Mihye
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.359-370
    • /
    • 2011
  • In this work, we obtain new solitary wave solutions for some nonlinear partial differential equations. The Jacobi elliptic function rational expansion method is used to establish new solitary wave solutions for the combined KdV-mKdV and Klein-Gordon equations. The results reveal that Jacobi elliptic function rational expansion method is very effective and powerful tool for solving nonlinear evolution equations arising in mathematical physics.

GLOBAL EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR COUPLED NONLINEAR WAVE EQUATIONS WITH DAMPING AND SOURCE TERMS

  • Ye, Yaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1697-1710
    • /
    • 2014
  • The initial-boundary value problem for a class of nonlinear higher-order wave equations system with a damping and source terms in bounded domain is studied. We prove the existence of global solutions. Meanwhile, under the condition of the positive initial energy, it is showed that the solutions blow up in the finite time and the lifespan estimate of solutions is also given.

Extension of Weakly Nonlinear Wave Equations for Rapidly Varying Topography (급변수심에의 적용을 위한 약 비선형 파동방정식의 확장)

  • 윤성범;최준우;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • From the weakly nonlinear mild-slope wave equations introduced by Nadaoka et al.(1994, 1997), a set of weakly nonlinear wave equations for rapidly varying topography are derived by including the bottom curvature and slope-squared tenns ignored in the original equations ofNadaoka et al. To solve the linear version of extended wave equations derived in this study one-dimensional finite difference numerical model is con¬structed. The perfonnance of the model is tested for the case of wave reflection from a plane slope with various inclination. The numerical results are compared with the results calculated using other numerical models reported earlier. The comparison shows that the accuracy of the numerical model is improved significantly in comparison with that of the original equations ofNadaoka et al. by including a complete set of bottom curva1w'e and slope¬squared terms for a rapidly varying topography.

  • PDF

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

THE N-ORDER ITERATIVE SCHEME FOR A SYSTEM OF NONLINEAR WAVE EQUATIONS ASSOCIATED WITH THE HELICAL FLOWS OF MAXWELL FLUID

  • Ngoc, Le Thi Phuong;Dzung, Nguyen Vu;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.471-497
    • /
    • 2022
  • In this paper, we study a system of nonlinear wave equations associated with the helical flows of Maxwell fluid. By constructing a N-order iterative scheme, we prove the local existence and uniqueness of a weak solution. Furthermore, we show that the sequence associated with N-order iterative scheme converges to the unique weak solution at a rate of N-order.

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.

NEGATIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR WAVE EQUATIONS WITH CRITICAL GROWTH

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • We show the existence of a negative solution for the system of the following nonlinear wave equations with critical growth, under Dirichlet boundary condition and periodic condition $$u_{tt}-u_{xx}=au+b{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha-1}{\upsilon}_+^{\beta}+s{\phi}_{00}+f,\\{\upsilon}_{tt}-{\upsilon}_{xx}=cu+d{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha}{\upsilon}_+^{{\beta}-1}+t{\phi}_{00}+g,$$ where ${\alpha},{\beta}>1$ are real constants, $u_+={\max}\{u,0\},\;s,\;t{\in}R,\;{\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator and f, g are ${\pi}$-periodic, even in x and t and bounded functions.

  • PDF

Development of Weakly Nonlinear Wave Model and Its Numerical Simulation (약비선형 파랑 모형의 수립 및 수치모의)

  • 이정렬;박찬성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-189
    • /
    • 2000
  • A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with the aid of the Galerkin's method. The equation is combined with the momentum equations defined at the mean water level. A single component model has also been obtained in terms of the surface displacement. The linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and Sprinks(1975). For the verification purposes of the present nonlinear model, the degenerate forms were compared with Airy(1845)'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond¬order permanent Stokes waves. In this study, the present nonlinear wave equations are discretized by the approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement was obtained.

  • PDF