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Development of Weakly Nonlinear Wave Model and Its Numerical Simulation
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Abstract [_] A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with
the aid of the Galerkin's method. The equation is combined with the momentum cquations defined at the mean
water level. A single component model has also been obtained in terms of the surface displacement, The
linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and
Sprinks(1975), For the verification purposes of the present nonlinear model, the degenerate forms were
compared with Airy(1845}'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond-
order permanent Stokes waves, In this study, the present nonlinear wave equations are discretized by the
approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the
comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement
was obtained.
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1. INTRODUCTION

Early efforts to model wave transformation frem off-
shore to onshore were based on the ray theory which
accounts for wave refraction due to changes in bathyme-
try and the diffraction effects were ignored. Prediction of
nearshore waves with the combined effects of refraction
and diffraction as well as reflection has taken a new
dimension with the use of the mild-slope equation and the
Boussinesq equation. These two approaches in predicting
nonlinear waves are essentially different in the sense that

one is based on the linear wave characteristics and the

other was started as an extensive work of the nonlinear
shallow water waves.

1.1 Mild-Slope Equation Type

The mild-slope equation developed by Berkhoff (1972)
has not only been used in its original form of an elliptic
equation but also provided the basic governing equation
for the development of other wave equations such as the
parabolic equation (Radder, 1979), hyperbolic equation
(Smith and Sprinks, 1975; Copeland, 1985; Madsen and
Larsen, 1987), and elliptic equation of phase averaged
type (Ebetsole et al., 1986).
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Chamberlain and Porter (1995) proposed a modified
mild slope equation that inctudes the higher-order bottom
effect terms as well as the evanescent modes. As an effort
towards modeling the propagation of nonlinear waves,
recently several time-dependent mild slope equations
have also been developed by Lee (1994), Nadaoka et al.
(1994), and Isobe {1994).

Lee’s Equation

Lee (1994) presented an equation set of nonlinear
model for regular waves which can be applied to waves
traveling from deep to shallow water.
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whereis 17 the free surface displacement, u the horizontal
velocity vector defined at the free surface level, # the ratio
of the group velocity C, to the phase speed C, and as the
dispersion relationship o= ghtanh kh is employed. The
above equations completely satisfy the lingar dispersion
relationship and when expanded, they were proven to be
consistent with Boussinesq equation of several types; Per-
egrine (1967), Madsen et al. (1991), and Nwogu (1993).
In addition, the position of averaged velocity below the
still water level was estimated based on the linear wave
theory. For irregular waves, the following equation
expressed in the alternative form of Smith and Sprinks
(1975) instead of Eq. (1) is suggested.
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Nadacka's Equation

Nadaoka et al. {1994) derived a time-dependent nonlin-
ear dispersive wave equation with the multi-term coupling
technique, which are here given in the single-term repre-
sentation as
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where w,(u, v)is the two-dimensional horizontal velocity

vector and w, the vertical velocity. The subscript ‘o’
denotes the value defined at z=0. The vertical velocity,
W, was given as
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The C, C,, and k are respectively the phase and the
group velocity, and the wave numbers which are obtained
by the linear dispersion relationship under the prescribed
incident frequency ¢ and local depth A.

Isobe's Equation

Isobe (1994) also derived nonlinear mild-slope equation
as given below by expanding the velocity potential into a
series in terms of a given set of vertical distribution func-
tions and hence include full nonlinearity and full disper-

sivity.
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The unknowns are 17 and %‘,{a= 1 10 N). The vestical
distribution of the velocity potential, @, is expressed as a

series in terms of a set of vertical distribution functions, fo:
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where a;a is the coefficient to f; and therefore independent
of z, and x = (x, ¥} denotes the position vector on the hor-
izontal plane. The fz1s expressed in the terms of the local
water depth k(x) as is normally the case. It was also shown
that nonlinear shallow water equations and Boussinesq
equations as well as mild-slope equation can be derived as
special cases of the nonlinear mild-slope equations.
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As the simplest case, Egs. (7) and (8) can be expressed
by the single component as follows.
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where 4 =CClg, B=(0"-KCCxg. If we assume
Jz) = coshi(h + z)/coshkh and f7= 1, we obtain as
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Therefore, the above can be consistent with Lee
(1994)’s equation in single component expression.

1.2 Boussinesq Equation Type

The classical Boussinesq equations for one-dimensional
propagation were first presented by Boussinesq(1872,
1877) and later the equations were extended to two-
dimensional propagation over mildly sloping bottoms by
Peregrine(1967). The Boussinesq type equations are
known to simulate the combined effects of nonlinear short
wave phenomena in shallow water areas quite well. Their
major restriction, however, is to incorporate only weak
dispersion and weak nonlinearity. Generally, the weak dis-
persion is more critical restriction as it directly affects the
accuracy of both wave celerity and group velocity which
is crucial for most wave dynamics. This problem has
attracted considerable attention in the last 10 years.
Numerous other formulations, therefore, have been devel-
oped to improve dispersion characteristics.

2. NONLINEAR VERSION OF MILD-
SLOPE EQUATION

2.1 Derivation

The nonlinear mild-slope equation will be derived
directly from the continuity equations by using the Galer-
kin's method. The continuity equations of an incompress-
ible fluid are given by
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where u, w are the horizontal velocity and vertical veloc-
ity components, respectively. A bold face symbol indi-
cates two horizontal components of flow vector; # = (u,
v). The two-dimensional gradient operator {d/dx, d-av),
is denoted by V. We multiply f{z} to Eq. (14), and inte-
grate from the bottom to the free surface.
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where, 1 is the free surface displacement and # is given
by V ¢ in terms of velocity potential. For the slowly vary-
ing water depth, the wave part of the velocity potential
may be written as

6(x.2,0) = fiz)d(x. 1)

where A(z) = cosh k(% +z)/coshkh is a slowly varying
function of x and /t}) denotes the velocity potential at the
mean water level, termed as 'the surface potential'. Recall
Leibnitz's tule

ngfdz = jg Vidz + .V a1,V B
to obtain the following expression from Eq. {15).
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Substituting the kinematic boundary conditions at free
surface(z = 1i7) and at bottorn(z = -4) into Eq. (16),
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where f; is the fvalue at the free surface. Taking Taylor
series expansion about 17 =0 to Eq. (19),
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and the second order term of the first term and the last
term can be offset retaining the lowest-order nonlinear

terms,
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Therefore Eq. (22) can be the following equation:
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where &, = V ¢A as the horizontal velocity vector at z = 0.

Differentiating by the variable &
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where C, Cp, ¢ and X are assumed to be time independent.
Substituting the dynamic free surface boundary condition,
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and assuming the last terms in Eq. {24),
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respectively and then yield the following equation:
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The above equation is combined with the nonlinear
momentum equation defined at z = 0.
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Taking Taylor series expansion about 77 = 0 and retain-
ing the lowest-order nonlinear terms, Eq. (27) becomes
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at z=0 and then finally we obtain the following momen-
fum equation:
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Therefore, Egs. (26) and (30) are a set of the governing
equations wsed for nonlinear wave propagation in this
study. We used the Miche's criterion (Miche, 1951}
because the breaking wave model is simple and accurate
enough, and guarantees stability. For the mass conserva-
tion, the broken mass due to wave breaking is conse-
quently passed on the next step elevation at each grid.

2.2 Single Component Model
Combining Egs. (26) and (30), yields
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In order to eliminate the velocity componenis except 7,

the following approximate relations are applied.
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For the asymptotic analysis, the above is re-expressed
as



Development of Weakly Nonlinear Wave Model and Its Numerical Simulation 185

20 [ Cer{gn+ L1 L s gy
a3 =V. [ E ( n+2C2[ +=tanh kh) }+gVn

2 -
{8 )]

We shall now consider the special forms of Eq. (33)
when depth is relatively shallow and deep. In the very
shallow water so that C = C, = Jgh and thah#h[J0, Eq.
(33) becomes
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which may be shown to be the combined form of
Airy(1845)’s non-dispersive nonlinear wave equations for
varying depth, cotrect to the second-order in nonlinearity.

Next, the phase speed and the group velocity are given
in lowest-order dispersion as

C = Jgh(1-I*h*/6) and C, = Jgh(1-k2h%/2)

Replacing them should result in the combined version
of Boussinesq equation.
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For the constant depth, invoking the relation ¥h =
Vo,

&1 ! 3
57 =gV (Vn-g(ghyi-E v (37)

which is in accordance with the classical Boussinesg
approximations.

For the deep water of constant depth, C = Jch and C;
= (/2. In this case, Eq. (33} can be approximated as
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with £%17 [J- V ?n%4 based on the Stokes wave theory.
If Eq. (31) is linearized, the time-dependent mild-slope
equation proposed by Smith and Sprinks (1975) is

obtained as
gﬁj V-[CC, ]+ [2-KCC,In = 0 (39)

2.3 Numerical Apalysis
The governing equations (26) and (30) have the similar
form to a set of the following shallow water equations.

%’f+ V- [{h+mu,) =0 40
du,
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There are already a number of numerical schemes to
provide the accurate and stable results in solving the
above shallow water equations, differently from Nadacka
et al. (1994)’s equations which appeared to have difficulty
in obtaining numerical solutions. If Eq. (40) is differenti-
ated by time ¢, we obtain

%7+V-[(h+n)%}+v{ﬂa%ﬂ=0 42)

In very shallow water, therefore, Eqs. (26) and (30) are
identical with Egs. (42) and (41), respectively.

They are discretized by the approximate factorization
technigues so that a tridiagonal matrix solver is used for
each direction. In this paper, the detailed description on
numerical scheme is omifted since a number of similar
schemes have been represented so far. Since the time step
of an explicit scheme is very sirictly limited by the Cou-
rant-Friedrichs-Lawy (CFL) condition, it is advisable to
use the implicit scheme without such concern. The
momentum equations, which have the nonlinear advective
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term, are divided into the two elementary operations:
advection and propagation, and solved by using a frac-
tional step method. The fraction step method is based on
the recognition that the physical phenomena of water flow
can be represented by superimposing individual opera-
tions as Chorin (1968) pointed out.

3. PHYSICAL EXPERIMENTS

The experiment was conducted in a Coastal-Hydraulics
Laboratory wave flume of Sungkyunkwan University, in
order to verify the numerical results of nonlinear waves.
The wave flume of 50 c¢m deep, 40 em wide, and 12 m
long consists of a wave generator and beach zones. The
bottom and side walls of the flume are glass to allow easy
optical access. The regular waves were generated by a pis-
ton-type wave paddie and the beach slope of 1/19 was set
at the other end of the wave flume.

The wave flume was decorated with the data acquisi-
tion system accessing the wave profile signals from the
wave gages. Gages were connected with amplifier for
increasing analog signals. Then the DaqBoard 100A
(DaqBoard), A/D converter, changes conditioned signals
into corresponding digital numbers saved as ASCII for-
mat.

Physical experiments were accomplished for two cases,
Experimental conditions consist of same wave conditions
for two different experimental setup, respectively. Wave
conditions for Case 1-A and Case 2-A are 7=0.8sec, Hi—
2 cm, Ur=10.05 and steepness=0.0282. Wave conditions
for Case 1-B and Case 2-B are 7=1.0 sec, Hi=1.5¢em,
Ur=12.80 and steepness= 0.0162. The Ursell parameter is
a dimensionless parameter that is useful to define the
range of application of the various wave theories. Gener-
ally cnoidal theory is applicable for Ur > 25 and Stokes
theory is applicable for Ur < 10.

The layouts of two different experimental configura-
tions are illustrated in Figs. | and 2 with the locations of
the measurement stations and detailed geometry of the
flume. The exposed breakwater is placed to the left half of
the wave tank looking in the direction of the wave prop-
agation, while the submerged breakwater is placed to the
left side.

As shown in Fig. 1, wave gages 1, 2 and 3 for Case |
were located at x = 41 ¢m, x =81 cm and x = 121cm mea-

I t9cm 1
(a) 3-D View
135cm 5cm 48.3cm
05 1%cm
2.5em L) pivExpERIMENT]
IMAGE AR
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4icm 40cm 40cm
(b) Top View
WAVE WAVE WAVE
GAGE GAGE OAGE WAVE
NO.u NO2 'W0.3 BREAKER

_ ..m,um/////MWWnW//////Z/}}/////////////% I‘ Oem

18icm
(c) Side View

Fig. 1. Physical layout of experiment Case 1: (a) 3-D view, (b}
top view, (¢} side view.
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(c) Side View

Fig. 2. Physical layout of experiment Case 2; (a} 3-D view, (b)
top view, (c) side view.
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sured shoreward from the toe of slope, respectively. The
measuring section was located about 10.5 cm apart from
the nearer sidewall.

As for the submerged breakwater shown in Fig, 2. wave
gages 1, 2 and 3 were located at x = -21.5 cm, x = 0 cm

WAVE GAGE NO.2
b T ‘lﬁ L T T T

L]
lime (sec)

Fig. 3. Comparison of wave profiles at wave gages No. 1, 2
and 3 of Case Ll-A (Hi=2.0 cm, T=0.8 s).

WAVE GAGE NO.1

WAVE GAGE NO.2
T

LR

Fig. 4. Comparison of wave profiles at wave gages No. 1, 2
and 3 of Case 1-B (Hi =1.5 em, T=1.0 s).

(center) and x = 12.5 ¢m measured shoreward from the
center of submerged breakwater, respectively. The
squared submerged breakwater is impermeable and has
1.1 ¢m height and 15 cm length.

4. RESULTS

Figures 3 and 4 show a comparison between the
observed and calculated temporal wave profiles for Case
1. The time series were synchronized with the computa-
tions at station 1. The measured results are also shown in
each figure by closed circles. The agreement appears to be
generally acceptable, though it is evident that both results
show the weak irregularity. In Case 1-A, the waves mea-
sured at stations 2 and 3 show the strong asymmetry due
to nonlinearity as we expected, While several peaks in a
period are shown in Case 1-B experiments, differently
from the numerical prediction. Judging from the detailed
experiments using a moving cart, they seemed to be
caused by reflection of asymmetric waves (radiating from
a breakwater) rather than the wave decomposition. Such
multi-peaks can occur under wave decomposition. The
wave decomposition is usually caused by a nonlinear
wave train passing over a submerged bar or a submerged
shelf. In this case, however, there is no submerged shelf
but a breakwater causes the strong reflection. Figures 5
and & show the 3-D perspective views of instantaneous
water surface elevation for two different wave conditions
obtained from the numerical model. In those figures, the

1)

-Aq,
3020 a0

g 20
{unit : em]

Fig. 5. 3-D view of nonlinear wave propagation by numerical
model for Case 1-A.

“‘:‘30 0
20

20 4g
[unit : em]
Fig. 6. 3-D view of nonlinear wave propagation by numerical
model for Case 1-B.
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WAVE GAGE NG 1

lime (sec)

Fig. 7. Comparison of wave proftles at wave gages No. 1, 2
and 3 of Case 2-A (Hi =2.0 cm, T=0.8 s).
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2 F 3 z X A
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Fig. 8. Comparison of wave profiles at wave gages No. 1, 2
and 3 of Case 2-B (Hi =1.5 cm, T=1.0 s).

wave diffraction is shown behind a breakwater.
Figures 7 and 8 give the comparison of temporal wave

[unit* em}

Fig. 9. 3-D view of nonlinear wave propagation by numerical
model for Case 2-A.

funit: em)

Fig. 10. 3-D view of nonlinear wave propagation by numerical
model for Case 2-B.

profiles for Case 2. The numerical results are in good
agreement with those of the observed data. Figures 9 and
10 show the 3-D views of instantaneous water surface ele-
vation for two different wave conditions obtained from
the numerical model. It is shown in Figs. 9 and 10 that
wave profiles are deformed over the submerged breakwa-
ter section. The submerged breakwater seems to cause
neither the strong wave decomposition nor predominant
multi-peaks because its height is relatively thin,

5. CONCLUSION

The nonlinear mild-slope equation was dertved directly
from the continuity equation by using the Galerkin's
method. In modeling breaking waves we employed the
Miche's criterion which believed to be simple, stable, and
reliable.

We verified nonlinear wave model capacity through
comparison of numertcal simulation to physical experi-
ments for two configurations; the exposed breakwater and
the submerged breakwater. The overall agreement
appeared for the exposed breakwater, though it is evident
that the weak uregularity in experimental data measure-
ments showed. The waves showed strong asymmetry due
to nonlinearity and multi-peaks due to reflection of non-
linear waves. Such phenomena might increase with Ursell
parameter increasing.

In the submerged breakwater, the best agreement was
shown. Wave profiles appeared to be deformed due to a
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submerged breakwater. However, neither wave decompo-
sition nor multi-peaks seems to be strongly observed in
the case of the submerged breakwater because its height is
relatively thin.
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