• 제목/요약/키워드: Nonlinear optimal design

검색결과 595건 처리시간 0.028초

차량 차체 설계 (Automotive Body Design)

  • 이정익;김병곤;정태진
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

DC-DC 컨버터에 대한 강인한 PI 제어기 설계 (Design of Robust PI Controller for DC-DC Converter)

  • 이현석;고창민;박성훈;박승규;안호균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.997_998
    • /
    • 2009
  • Nowadays DC-DC converter has been used widely in electronic production. It has a high requirement in wide input voltage, load variations, stability, providing a fast transient response and the most important thing is that it can be applied easily and efficiently. However, it is not easy to be controlled because of nonlinear system. This study introduces a fuzzy linear control design method for nonlinear systems with optimal $H^{\infty}$ robustness performance. First, the Takagi and Sugeno fuzzy linear model is employed to approximate a nonlinear system. Next, based on the fuzzy linear model, a fuzzy controller is developed to stabilize the nonlinear system, and at the same time the effect of external disturbance on control performance is attenuated to a minimum level. Thus based on the fuzzy linear model, ��$H^{\infty}$ performance design can be achieved in nonlinear control systems. Linear matrix inequality (LMI) techniques are employed to solve this robust fuzzy control problem. PI control structure is used and the control gains are determined based on $H^{\infty}$ control.

  • PDF

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

Davidenko법에 의한 시간최적 제어문제의 수치해석해 (The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method)

  • 윤중선
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

A Novel Nonlinear Robust Guidance Law Design Based On SDRE Technique

  • Moosapour, Seyyed Sajjad;Alizadeh, Ghasem;Khanmohammadi, Sohrab;Moosapour, Seyyed Hamzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.369-376
    • /
    • 2012
  • A nonlinear robust guidance law is designed for missiles against a maneuvering target by incorporating sliding-mode and optimal control theories based on the state dependent Riccati equation (SDRE) to achieve robustness against target accelerations. The guidance law is derived based on three-dimensional nonlinear engagement kinematics and its robustness against disturbances is proved by the second method of Lyapunov. A new switching surface is considered in the sliding-mode control design. The proposed guidance law requires the maximum value of the target maneuver, and therefore opposed to the conventional augmented proportional navigation guidance (APNG) law, complete information about the target maneuver is not necessary, and hence it is simple to implement in practical applications. Considering different types of target maneuvers, several scenario simulations are performed. Simulation results confirm that the proposed guidance law has much better robustness, faster convergence, and smaller final time and control effort in comparison to the sliding-mode guidance (SMG) and APNG laws.

최적설계시 이차근사법의 수치성능 평가에 관한 연구 (An Evaluation of the Second-order Approximation Method for Engineering Optimization)

  • 박영선;박경진;이완익
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

비선형 계획법을 이용한 상수도 관망설계에 관한 연구 (A Study on the Pipe Network System Design Using Non-Linear programming)

  • 김정환;김태균
    • 물과 미래
    • /
    • 제27권4호
    • /
    • pp.59-67
    • /
    • 1994
  • 본 연구에서는 설계기준에 합당한 제약조건을 고려하여 최저경비의 관망시스템을 설계함을 목적으로 비선형계획법(NLP)을 적용하였다. 경기도 고양군의 고양배수지를 급수원으로 하는 배수유역에 실제 적용하여 기존의 설계와 비교한 결과 기존 수리모의모형에서 사용되고 있는 반복계산 과정이 필요없이 설계가 가능함을 알 수 있었고, 설계의 최적화를 도모하는 동시에 수요절점에서의 유량 및 수압조건을 만족시킬 수 있었다. 이상의 결과와 같이, 본 연구에서의 비선형계획법(NLP)을 이용한 상수도 관망설계가 실무에서도 효과적으로 사용될 수 있음을 알 수 있었고 최적화 설계로 인하여 경제적 측면까지도 고려할 수 있음을 알 수 있었다.

  • PDF

접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계 (Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections)

  • 최세휴
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.683-694
    • /
    • 2004
  • 본 논문에서는 접합부의 비선형을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 최적화 기법으로는 Choi와 Kim이 제안한 직접탐색법을 사용하였다. 직접탐색법은 LRFD의 상관방정식으로 계산된 값중에서 최대값을 가지는 부재의 크기를 단계별로 증가시키는 방법이다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 LRFD방법과 비교하였다.

접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계 (Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections)

  • 최세휴;박문호;송재호;임청권
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.661-672
    • /
    • 2003
  • 본 논문에서는 접합부의 비선형을 고려한 강뼈대 구조물의 고등해석과 최적설계를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 최적화 기법으로는 Choi와 Kim이 제안한 직접탐색법을 사용하였다. 직접탐색법은 LRFD의 상관방정식으로 계산된 값중에서 최대값을 가지는 부재의 크기를 단계별로 증가시키는 방법이다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 LRFD방법과 비교하였다.

외란관측기를 이용한 리니어 서보메커니즘의 최적튜닝 (Optimal Tuning of Linear Servomechanisms using a Disturbance Observer)

  • 홍승환;정성종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.926-931
    • /
    • 2008
  • In order to design a high-performance controller with excellent positioning and tracking performance, an optimal tuning method based on the integrated design concept is studied. DOBs, feedforward controllers and CCC are applied to control the bi-axial linear servomechanism. To derive accurate dynamic models of mechanical subsystems equipped with linear servos for the integrated tuning, system identification processes are conducted through the sine sweeping. An optimal tuning problem with stability, robustness and overshoot constraints is formulated as a nonlinear constrained optimization problem. Optimal gains are obtained through the SQP method. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed controller and integrated tuning method.

  • PDF