Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections

접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계

  • 최세휴 (경북대학교 토목공학과)
  • Received : 2004.07.14
  • Accepted : 2004.10.06
  • Published : 2004.10.27

Abstract

Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

본 논문에서는 접합부의 비선형을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 최적화 기법으로는 Choi와 Kim이 제안한 직접탐색법을 사용하였다. 직접탐색법은 LRFD의 상관방정식으로 계산된 값중에서 최대값을 가지는 부재의 크기를 단계별로 증가시키는 방법이다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 LRFD방법과 비교하였다.

Keywords

Acknowledgement

Supported by : 경북대학교

References

  1. 한국강구조학회 논문집 v.6 no.4 공간 강뼈대 구조물의 대변형 및 탄소성 유한요소해석 김문영
  2. 대한토목학회 논문집 v.20 no.1-A 고등해석을 이용한 강뼈대 구조물의 이산화 최적설계 장준호;박문호;시상광
  3. J. Struct. Eng., ASCE v.112 no.12 Structural servicebility: a critical appraisal and research needs Ad Hoc Committee on Serviceability
  4. Load and resistance factor design specification AISC
  5. J. Inst. Struct. Eng. v.69 no.23 Simplified second-order inelastic analysis for steel frames Al-Mashary, F.;Chen, W.F.
  6. J. Struct. Eng., ASCE v.115 no.1 Semi-rigid steel beam-to-column connections: data base and modeling Chen, W.F.;Kishi, N.
  7. Stability design of steel frames Chen, W.F.;Lui, E.M.
  8. LRFD steel design using advanced analysis Chen, W.F.;Kim, S.E.
  9. Engineering Structures v.24 no.9 Optimal design of steel frames using practical nonlinear inelastic analysis Choi, S.H.;Kim, S.E.
  10. Limit states design of steel structures, CAN/CAS S16.1-M94 CSA
  11. Engineering Journal. AISC v.29 no.3 Simple equations for effective length factors Dumonteil, P.
  12. Ultimate limit state calculation of sway frames with rigid joints, Technical Committee 8-Structural stability technical working group 8.2-System publication No. 33 ECCS
  13. Essentials of Eurocode 3 design manual for steel structures in buildings, ECCS-Advisory Committee 5, No. 65 ECCS
  14. Engineering Journal, AISC v.26 Serviceability guidelines for steel structures Ellingwood, B.
  15. J. Struct. Eng., ASCE v.122 no.11 Practical advanced analysis for braced steel frame design Kim, S.E.;Chen, W.F.
  16. J. Struct. Eng., ASCE v.122 no.11 Practical advanced analysis for unbraced steel frame design Kim, S.E.;Chen, W.F.
  17. International Journal of Solids and Structures v.38 Practical advanced analysis for semi-rigid space frames Kim, S.E.;Choi, S.H.
  18. J. Struct. Eng., ASCE v.118 no.2 On second-order inelastic methods for steel frame design King, W.S.;White, D.W.;Chen, W.F.
  19. J. Struct. Eng., ASCE v.116 no.7 Moment-rotatin relations of semi-rigid connections with angles Kish, N.;Chen, W.F.
  20. Engng. Optim. v.19 Genetic algorithm in optimization problem with discrete and integer design variables Lin, C.Y.;Hajela, P.
  21. Struct. Optim. v.4 A filtered simulated annealing strategy for discrete optimization of 3D steel frameworks May, S.A.;Balling, R.J.
  22. Comput. Struct. v.62 Optimal design of dynamically constrainted structures Pantelides, C.P.;Tzan, S.R.
  23. J. Struct. Eng., ASCE v.118 Discrete optimization of structures using genetic algorithms Rajeev, S.;Krishnammorthy, C.S.
  24. AS4100-1990, Steel structures Standards Australia