• Title/Summary/Keyword: Nonlinear gain

Search Result 493, Processing Time 0.026 seconds

A Novel Modeling and Performance Analysis of Imperfect Quadrature Modulator in RF Transmitter

  • Park, Yong-Kuk;Kim, Hyeong-Seok;Lee, Ki-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.570-575
    • /
    • 2012
  • In a wireless communication RF transmitter, the output of a quadrature modulator (QM) is distorted by not only the linear imperfection features such as in/quadrature-phase (I/Q) input gain imbalance, local phase imbalance, and local gain imbalance but also the nonlinear imperfection features such as direct current (DC) offset and mixer nonlinearity related to in-band spurious signal. In this paper, we propose the unified QM model to analyze the combined effects of the linear and nonlinear imperfection features on the performance of the QM. The unified QM model consists of two identical nonlinear systems and modified I/Q inputs based on the two-port nonlinear mixer model. The unified QM model shows that the output signals can be expressed by mixer circuit parameters such as intercept point and gain as well as the imperfection features. The proposed approach is validated by not only simulation but also measurement.

An Observer Design for MIMO Nonlinear Systems

  • Lee, Sungryul;Yanghee Yee;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.189-194
    • /
    • 2002
  • This paper presents a state observer design for a class of MTMO nonlinear systems that has a block triangular structure. For this, the extension of the existing design for SISO triangular systems to MIMO cases is provided. Since the gain of the proposed observer. depends on a nonlinear part as well as a linear one of a system, it improves the transient performance of the high gain ob-server. Also, by using a generalized similarity transformation for the error dynamics, it is shown that order some boundedness condi-tion, the proposed observer guarantees the global exponential convergence of the estimation error. Finally, we will give a simulation example to show the validity of our design methodology.

Observer based consensus of nonlinear multi-agent systems (비선형 다개체 시스템의 관측기 기반의 일치)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.121-126
    • /
    • 2018
  • This paper addresses the consensus problem for nonlinear multi-agent systems using observer based controller. In order to solve this problem, the high gain approach is combined with the previous low gain controller. Also, it is shown that the proposed observer based controller can always guarantee the consensus of nonlinear systems with lower triangular nonlinearity.

PID Autotuning Algorithm Based on Saturation Function Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.263-269
    • /
    • 1998
  • We use the slope bounded saturation nonlinear feedback element instead of relay to find ultimate gain and period of linear plant. Saturation nonlinear element reduces the high harmonics of plant output. The reduction of high harmonics improve the accuracy of describing function method used to find ultimate gain and period. We give a simple procedure to find ultimate gain and period with saturation nonlinear element. A PID controller design method with known time delay element is also given, which is very useful when oscillation is not occurred with nonlinear element.

  • PDF

Design of the High Gain Nonlinear Feedback Linearizing Control. (고이득 제어를 이용한 비선형 궤환 선형화 제어기개발.)

  • Lee, Ju-Suk;Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.930-932
    • /
    • 1996
  • Some results and a nonlinear controller are proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear subsystem with unknown parameter and it can be stabilized using the high gain nonlinear feedback linearizing controller. As an example for the proposed theorem, we introduce the single link robot with joint flexibility which is an well known example.

  • PDF

FUZZY Logic-Based Fast Gain Scheduling Control Using Fuzzy Preprocessor

  • Lee, Seon-Ho;Kim, Sung-Gyu;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.73-76
    • /
    • 1997
  • This paper proposes the fuzzy logic-based fast gain scheduling(FFGS) controller for regulation problem in nonlinear systems. It utilizes which reflects the derivative information on the original scheduling variable in order to achieve better performance than the existents. Moreover, we apply the proposed control scheme to control active suspension systems with nonlinear components.

  • PDF

East H$_{\infty}$ Gain Scheduling for Uncertain Nonlinear Systems

  • Lee, Seon-Ho;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.362-366
    • /
    • 1998
  • This paper proposes a fast H$\sub$$\infty$/ gain scheduled controller that stabilizes the uncertain nonlinear system with exogenous signals. The controller is constructed at a distinct and fixed value of exogenous signals using H$\sub$$\infty$/ syn-thesis methodology. Then the constructed controller set is switched for the wide range of variation of exogenous signals. Using the derivative gain, the number of constructed and engaged controllers for the fast varying exogenous signal is reduced.

  • PDF

An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine (풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과)

  • Lim, Chae-Wook;Jo, Jun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

Comparison Study of Nonlinear CSAS Flight Control Law Design Using Dynamic Model Inversion and Classical Gain Scheduling (항공기 CSAS 설계를 위한 고전적 Gain Scheduling 기법과 Dynamic Model Inversion 비선형 기법의 비교 연구)

  • Ha, Cheol-Geun;Im, Sang-Su;Kim, Byeong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.574-581
    • /
    • 2001
  • In this paper we design and evaluate the longitudinal nonlinear N(aub)z-CSAS(Command and Stability Augmentation System) flight control law in \"DMI(Dynamic Model Inversion)-method\" and classical \"Gain Scheduling-method\", respectively, to meet the handling quality requirements associated with push-over pull-up maneuver. It is told that the flight control law designed in \"DM-method\" is adequate to the full flight regime without gain scheduling and is efficient to produce the time response shape desired to the handling quality requirements. On the contrary, the flight control law designed in \"Gain Scheduling-method\" is easy to be implemented in flight control computer and insensitive to variation of the actuator model characteristics.n of the actuator model characteristics.

  • PDF

PID Autotuning Algorithm with an Asymmetric Self-oscillation (비대칭 자기 진동에 대한 PID 자동동조 알고리듬)

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.128-135
    • /
    • 2002
  • We use the saturation nonlinear feedback element to generate self-oscillation in order to find an ultimate gain and period of linear plant. The use of saturation nonlinear feedback element can improve accuracy of an ultimate gain and period of unknown linear plant. An ultimate gain and period of linear plant can be used to tune a PID controller parameters. It is possible that an asymmetric oscillation can be occurred under the special circumstances such as with static load disturbance. We analyze an asymmetric self-oscillation. As the results of an analysis, we propose a method to find an ultimate gain and period of linear Plant under the asymmetric self-oscillation.

  • PDF