• Title/Summary/Keyword: Nonlinear equations

Search Result 2,269, Processing Time 0.03 seconds

RADIAL SYMMETRY AND SPHERICAL NODAL SET OF SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

  • Seok, Yong-Jing
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.133-135
    • /
    • 1995
  • In this note, we will investigate the radial symmetry of some kind of solutions of nonlinear ellipitic equations $$ \Delta U = f(U) $$ $$ (1.1) U = 0 in B $$ $$ U \in C^2 (\bar{B}) on \partial B$$ Here f is $C^1$ and B denotes a n-dimensional unit ball in $R^n$.

  • PDF

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

THE p-LAPLACIAN OPERATORS WITH POTENTIAL TERMS

  • Chung, Soon-Yeong;Lee, Hee-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.591-601
    • /
    • 2011
  • In this paper, we deal with the discrete p-Laplacian operators with a potential term having the smallest nonnegative eigenvalue. Such operators are classified as its smallest eigenvalue is positive or zero. We discuss differences between them such as an existence of solutions of p-Laplacian equations on networks and properties of the energy functional. Also, we give some examples of Poisson equations which suggest a difference between linear types and nonlinear types. Finally, we study characteristics of the set of a potential those involving operator has the smallest positive eigenvalue.