RADIAL SYMMETRY AND SPHERICAL NODAL SET OF SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

YONG JING SEOK

1. Introduction

In this note, we will investigate the radial symmetry of some kind of solutions of nonlinear ellipitic equations

(1.1)
$$\begin{aligned} \Delta U &= f(U) \\ U &= 0 \\ U &\in C^2(\overline{B}) \end{aligned} \quad \text{on } \partial B$$

Here f is C^1 and B denotes a n-dimensional unit ball in R^n . And $C^2(\overline{B})$ denotes the space of all functions which have continous second partial derivatives up to order 2. Gidas-Ni-Nirenberg proved that the positive solutions of (1.1) must be radially symmetric. Here we are interested in the radial symmetry of solutions of (1.1) only with U(0) > 0 but which have spherical nodal set.

2. Radial symmetry results

The nodal set of solution U of (1.1) is the set

$$\{x \in B; U(x) = 0\}.$$

If U is rotationally symmetric, it is obvious that the nodal set is spherical. Conversely, if the nodal set is spherical, let the nodal set of solution U of (1.1) with U(0) > 0 be

$$\bigcup_{\lambda \in \Lambda} S(\lambda)$$

Received August 17, 1994. Revised October 31, 1994.

Key words: Nodal set, radial symmetry, rotation transform.

where $\Lambda \subset [0,1]$ and $S(\lambda) = \{x \in B; |x| = \lambda\}$. From now on, let us denote

$$(2.1) \overline{\lambda} = inf_{\lambda \in \Lambda} \{\lambda\}.$$

LEMMA. If the nodal set of solution U of (1.1) with U(0) > 0 is spherical, then $\overline{\lambda}$ is positive and isolated.

Proof. If Λ is finite set, it is obvious that $\overline{\lambda}$ is isolated and $\overline{\lambda} > 0$ since $0 \notin \Lambda$. Now if Λ is an infinite set, obviously $\overline{\lambda} > 0$. Otherwise, there is a sequence $\{\lambda_i\}$ with $\lambda_i \to 0$, then U(0) = 0. It contradicts U(0) > 0, which shows $\overline{\lambda} > 0$. Now suppose that $\overline{\lambda}$ is not isolated, there is a sequence $\{\lambda_i\}$ with $\lambda_i \to \overline{\lambda}(>0)$. Then in the polar coordinates $x = r \cdot \xi$ where $\xi \in S^{n-1}$ and $r^2 = x_1^2 + x_2^2 + \cdots + x_n^2$,

(2.2)
$$U = U_r = U_{rr} = 0 \text{ for } r = \overline{\lambda} \text{ and}$$

$$U = D_{\xi}U = D_{\xi}^2U = 0 \text{ on } S(\overline{\lambda})$$

which implies

(2.3)
$$U = \Delta U = 0 \quad \text{on} \quad S(\overline{\lambda}).$$

So in the case $f(0) \neq 0$, it contradicts (1.1). Now in the case f(0) = 0, we set

$$C(x) = \int_0^1 f'(tU(x)) dt,$$

then U solves the Cauchy problem

(2.4)
$$\Delta U = C(x)U \quad \text{in} \quad B(\overline{\lambda})$$

$$U = U_r = 0 \quad \text{on} \quad S(\overline{\lambda})$$

By uniqueness of solutions to Cauchy problem of linear elliptic equations, U constantly equals 0 in $B(\overline{\lambda})$. It also contadicts U(0)>0. This proves the lemma.

We now state and prove the main theorem.

THEOREM. A solution U of (1.1) with U(0) > 0 is radially symmetric if its nodal set is spherical.

Proof. Let us denote $\overline{\lambda}$ as in the Lemma and $B(\overline{\lambda}) = \{x \in \mathbb{R}^n; |x| < \overline{\lambda}\}$. Now in $B(\overline{\lambda})$, U is positive since there are no nodal points in $B(\overline{\lambda})$, together with $B(\overline{\lambda})$ is simply connected. By the result of [GNN], U must be radial symmetric in $B(\overline{\lambda})$, in the polar coordinates, we obtain

(2.5)
$$U(r) = 0, \frac{\partial U}{\partial r} (r) = \text{const. on } S(\overline{\lambda}).$$

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be any rotation transform. Then V = U(Tx) also solves equation (1.1) since (1.1) is invariant under the transform T. Obviously

(2.6)
$$V = U, V_r = U_r = \text{const.}$$
 on $S(\overline{\lambda})$.

Then W = (V - U) is a solution to the Cauchy problem

(2.7)
$$\Delta W = \left(\int_0^1 f'(tV + (1-t)U) dt \right) W \quad \text{in} \quad B$$

$$W = W_r = 0 \quad \text{on} \quad S(\overline{\lambda})$$

By the uniqueness of the Cauchy problem, (V - U) constantly equals 0, which means U(Tx) = U(x) in B for any rotation transform T, which implies U is radially symmetric throughout B.

REMARK. The result of [GNN] is a special case of the problem since the nodal set of a positive solution is the sphere ∂B .

References

- 1. B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
- 2. W. M. Ni, L. A. Peletier and J. Serrin, Nonlinear Diffusion Equations and their Equilibrium States I, 1986.

Department of Mathematics Education Kangwon National University Cuncheon 200-701, Korea