DOI QR코드

DOI QR Code

APPLICATIONS OF THE COUPLED FIXED POINT THEOREM TO THE NONLINEAR MATRIX EQUATIONS

  • Kim, Sejong (Department of Mathematics Chungbuk National University) ;
  • Lee, Hosoo (Department of Mathematics Sungkyunkwan University)
  • Received : 2016.12.22
  • Accepted : 2017.07.17
  • Published : 2018.01.01

Abstract

In this article we consider certain types of nonlinear matrix equations including the stochastic rational Riccati equation and show the existence and uniqueness of the positive definite solution by using Bhaskar-Lakshmikantham's coupled fixed point theorem.

Keywords

References

  1. M. Berzig, X. Duan, and B. Samet, Positive definite solution of the matrix equation $X=Q-A*X^{-1}A+B*X^{-1}B$ via Bhaskar-Lakshmikantham fixed point theorem, Math. Sci. 6 (2012), Art. 27, 6 pp. https://doi.org/10.1186/2251-7456-6-6
  2. M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. https://doi.org/10.1016/j.camwa.2012.01.018
  3. T. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  4. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Vol. 169, Springer-Verlag, New York, 1997.
  5. X. Duan, A. Liao, and B. Tang, On the nonlinear matrix equation $X-{\Sigma}^m_{i=1}A^*_iX^{{\delta}_i}A_i=Q$, Linear Algebra Appl. 429 (2008), no. 1, 110-121. https://doi.org/10.1016/j.laa.2008.02.014
  6. A. Ferrante and B. Levy, Hermitian solutions of the equation X = Q + N*XN, Linear Algebra Appl. 247 (1996), 359-373. https://doi.org/10.1016/0024-3795(95)00121-2
  7. J. Harjani, B. Lopez, and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), no. 5, 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
  8. V. Hasanov, Positive definite solutions of the matrix equations $X{\pm}A*X^{-q}A=Q$, Linear Algebra Appl. 404 (2005), 166-182. https://doi.org/10.1016/j.laa.2005.02.024
  9. M. Huang, C. Huang, and T. Tsai, Applications of Hilbert's projective metric to a class of positive nonlinear operators, Linear Algebra Appl. 413 (2006), no. 1, 202-211. https://doi.org/10.1016/j.laa.2005.08.024
  10. V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  11. Y. Lim, Solving the nonlinear matrix equation $X=Q+{\Sigma}^m_{i=1}M_iX^{{\delta}_i}M^*_i$ via a contraction principle, Linear Algebra Appl. 430 (2009), no 4, 1380-1383. https://doi.org/10.1016/j.laa.2008.10.034
  12. X. G. Liu and H. Gao, On the positive definite solutions of the matrix equation $X^s{\pm}A^TX^{-t}A=I_n$, Linear Algebra Appl. 368 (2003), 83-97. https://doi.org/10.1016/S0024-3795(02)00661-4
  13. N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), no. 3, 983-992. https://doi.org/10.1016/j.na.2010.09.055
  14. B. Meini, Effcient computation of the extreme solutions of $X+A*X^{-1}A=Q$ and $X-A*X^{-1}A=Q$, Math. Comput. 71 (2001), 1189-1204. https://doi.org/10.1090/S0025-5718-01-01368-0
  15. A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4