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Abstract. In this paper, we study nonoscillatory solutions of a class of second order

nonlinear neutral delay differential equations with positive and negative coefficients. Some

sufficient conditions for existence of nonoscillatory solutions are obtained.

1. Introduction

Consider the second order nonlinear neutral delay differential equation with
positive and negative coefficients

[r(t)(x(t) + p(t)x(t− τ))
′
]
′
+ Q1(t)f(x(t− σ1))−Q2(t)g(x(t− σ2)) = 0, (E)

where t ≥ t0, τ ∈ (0,∞), σ1, σ2 ∈ [0,∞), p,Q1, Q2, r ∈ C([t0,∞), R), f, g ∈
C(R,R). Throughout this paper, we assume that

(c1) f and g satisfy local Lipschitz Condition, and xf(x) > 0, xg(x) > 0, for
x 6= 0.

(c2) r(t) > 0, Qi ≥ 0,
∫∞

R(t)Qi(t)dt < ∞, (i = 1, 2), where R(t) =
∫ t

t0
1

r(s)ds.

(c3) aQ1(t)−Q2(t) s eventually nonnegative for every a > 0.

Second order neutral delay differential equations have applications in problems
dealing with vibrating masses attaches to an elastic bar and in some variational
problems (see Hale [5]).
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Let u ∈ C([t0 − ρ,∞), R), where ρ = max{τ, σ1, σ2}, be a given function and
let y0 be a given constant. Using the method of steps, equation (E) has a unique
solution x ∈ C([t0 − ρ,∞), R), in the sense that both x(t) + p(t)x(t − τ) and
r(t)(x(t) + p(t)x(t − τ))

′
are continuously differentiable for t ≥ t0, x(t) satisfies

equation (E) and

x(s) = u(s) for s ∈ [t0 − ρ, t0], (x(t) + p(t)x(t− τ))
′
|t=t0 = y0.

For further questions concerning existence and uniqueness of solutions of neutral
delay differential equations, (see Hale [5]).

A solution of equation (E) is called oscillatory if it has arbitrarily large zeros,
and otherwise it is non-oscillatory.

We observe that the oscillatory and asymptotic behavior of solutions for second
order neutral and non-neutral delay differential equations has been studied in many
papers, e.g. [1]-[4], [6]-[10]. The second order neutral equation (E) received much
less attention, which is due mainly to the technical difficulties arising in its analysis.
See [1], [2], [4] for reviews of this theory.

This paper was motivated by recent paper [6], where there the authors give a
criterion for the existence of non-oscillatory solution of second order linear neutral
delay equation

d2

dt2
[x(t) + p(t)x(t− τ)] + Q1(t)x(t− σ1)−Q2(t)x(t− σ2) = 0, (E1)

where p ∈ R, τ ∈ (0,∞), σ1, σ2 ∈ [0,∞), Q1, Q2 ∈ C([t0,∞), R+). The purpose
of this paper is to present some new criteria for the existence of non-oscillatory
solution of (E), which extend results in [6], [7].

2. Main results

Our main results are the following:

Theorem 1. Suppose that Conditions (c1) − (c3) hold and that there exists a
constant p0 such that

(1) |p(t)| ≤ p0 <
1
2

eventually.

Then (E) had a non-oscillatory solution.

Proof. Choose constants N1 ≥ M1 > 0 such that

(2)
1

1− p0
< N1 ≤

1−M1

p0
<

1
p0

.

Let X be the set of all continuous and bounded functions on [t0,∞) with the
sup norm. Set

A1 = {x ∈ X : M1 ≤ x(t) ≤ N1, t ≥ t0}.
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Let Lf (A1), Lg(A1) denote Lipschitz constants of functions f, g on the set A1,
respectively, and

L1 = max{Lf (A1), Lg(A1)}, α1 = max
x∈A1

{f(x)}, β1 = min
x∈A1

{f(x)},

α2 = max
x∈A1

{g(x)}, β2 = min
x∈A1

{g(x)}.

Choose a t1 > t0 + ρ, ρ = max{τ, σ1, σ2}. Sufficiently large such that

aQ1(t)−Q2(t) ≥ 0 for t ≥ t1 and a > 0.

|p(t)| ≤ p0 <
1
2

for t ≥ t1.

∫ ∞

t1

R(s)[Q1(s) + Q2(s)]ds <
1− p0

L1
(3)

0 ≤
∫ ∞

t1

R(s)[α1Q1(s)− β2Q2(s)]ds ≤ (1− p0)N1 − 1, and(4) ∫ ∞

t1

R(s)[β1Q1(s)− α2Q2(s)]ds ≥ 0.(5)

Define a mapping T1 : A1 → X as follows

(T1x)(t) =



1− p(t)x(t− τ)
+R(t)

∫∞
t

[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ1))]ds

+
∫ t

t1
R(s)[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ1))]ds, t ≥ t1,

(T1x)(t1), t0 ≤ t ≤ t1.

Clearly, T1x is continuous. For every x ∈ A1 and t ≥ t1, using (1) and (4) we
get

(T1x)(t) ≤ 1 + p0N1 +
∫ ∞

t1

R(s)[α1Q1(s)− β2Q2(s)]ds ≤ N1, t > t1.

On the other hand, in view of (1), (2) and (5) we have

(T1x)(t) ≥ 1− p0N1 ≥ M1, t > t1.

Thus we proved that T1A1 ⊂ A1. Since A1 is a bounded, closed and convex subset
of X we have to prove that T1 is a contraction mapping on A1 to apply the contract
ion principle.
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Now, for x1, x2 ∈ A1 and t ≥ t1, in view of (3) we have

|(T1x1)(t)− (T1x2)(t)|

≤ p0|x1(t− τ)− x2(t− τ)|+ R(t)
∫ ∞

t

Q1(s)|f(x1(s− σ1))− f(x2(s− σ1))|ds

+ R(t)
∫ ∞

t

Q2(s)|g(x1(s− σ2))− g(x2(s− σ2))|ds

+
∫ t

t1

R(s)Q1(s)|f(x1(s− σ1))− f(x2(s− σ1))|ds

+
∫ t

t1

R(s)Q2(s)|g(x1(s− σ2))− g(x2(s− σ2))|ds

≤ p0‖x1 − x2‖

+ L1‖x1 − x2‖{
∫ ∞

t

R(s)[Q1(s) + Q2(s)]ds +
∫ t

t1

R(s)[Q1(s) + Q2(s)]ds}

= ‖x1 − x2‖{p0 + L1

∫ ∞

t1

R(s)[Q1(s) + Q2(s)]ds}

= q0‖x1 − x2‖,

where we used sup norm. This immediately implies that

‖T1x1 − T1x2‖ ≤ q0‖x1 − x2‖,

where in view of (3), q0 < 1, which proves that T1 is a contraction mapping.
Consequently T1 has the unique fixed point x, which is obviously a positive solution
of (E). This completes the proof of Theorem 1. �

Theorem 2. Suppose that conditions (c1) − (c3) hold, and if one of the following
two conditions is satisfied:

(i) p(t) ≥ 0 eventually, and 0 < p1 < 1;(6)
(ii) p(t) ≤ 0 eventually, and − 1 < p2 < 0,(7)

where p1 = lim
t→∞

supP (t), p2 = lim
t→∞

inf P (t). Then (E) has a nonoscillatory solu-
tion.

Proof. (i). Suppose (6) hold. Choose constants N2 ≥ M2 > 0 such that

(8) 1− p1 < N2 ≤
4

3p1 + 1
[(1− p1)−M2].

Let X be the set as in Theorem 1. Set

A2 = {x ∈ X : M2 ≤ x(t) ≤ N2, t ≥ t0}.
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Define

L2 = max{Lf (A2), Lg(A2)}, α1 = max
x∈A2

{f(x)}, β1 = min
x∈A2

{f(x)},

α2 = max
x∈A2

{g(x)}, β2 = min
x∈A2

{g(x)},

where Lf (A2), Lg(A2) are Lipschitz constants of functions f, g on the set A2,
respectively.

Choose a t2 > t0 + ρ sufficiently large such that

0 ≤ p(t) <
1 + 3p1

4
for t ≥ t2.(9) ∫ ∞

t2

R(s)[Q1(s) + Q2(s)]ds <
3(1− p1)

4L2
,(10)

0 ≤
∫ ∞

t2

R(s)[α1Q1(s)− β2Q2(s)]ds ≤ N2 + (p1 − 1), and(11) ∫ ∞

t2

R(s)[β1Q1(s)− α2Q2(s)]ds ≥ 0.(12)

Define a mapping T2 : A2 → X as follows

(T2x)(t) =



1− p1 − p(t)x(t− τ)
+R(t)

∫∞
t

[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds

+
∫ t

t2
R(s)[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds, t ≥ t2,

(T2x)(t2), t0 ≤ t ≤ t2.

Clearly, T2x is continuous. For every x ∈ A2 and t ≥ t2, using (c3) and (11) we
get

(T2x)(t)

= 1− p1 − p(t)x(t− τ) + R(t)
∫ ∞

t

[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds

+
∫ t

t2

R(s)[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds

≤ 1− p1 +
∫ ∞

t

R(s)[α1Q1(s)− β2Q2(s)]ds +
∫ t

t2

R(s)[α1Q1(s)− β2Q2(s)]ds}

= 1− p1 +
∫ ∞

t2

R(s)[α1Q1(s)− β2Q2(s)]ds ≤ N2, t ≥ t2.
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Furthermore, in view of (8) and (9) we have

(T2x)(t)

≥ 1− p1 −
1 + 3p1

4
N2 + R(t)

∫ ∞

t

[β1Q1(s)− α2Q2(s)]ds

+
∫ t

t2

R(s)[β1Q1(s)− α2Q2(s)]ds

≥ 1− p1 −
1 + 3p1

4
4

1 + 3p1
[(1− p1)−M2] = M2, t ≥ t2.

Thus we proved that T2A2 ⊂ A2. Since A2 is a bounded, closet and convex
subset of X we have to prove that T2 is a contraction mapping on A2 to apply the
contraction principle.

Now for x1, x2 ∈ A2 and t ≥ t2 we have

|(T2x1)(t)− (T2x2)(t)|

≤ p1|x1(t− τ)− x2(t− τ)|+ R(t)
∫ ∞

t

Q1(s)|f(x1(s− σ1))− f(x2(s− σ1))|ds

+ R(t)
∫ ∞

t

Q2(s)|g(x1(s− σ2))− g(x2(s− σ2))|ds

+
∫ t

t2

R(s)Q1(s)|f(x1(s− σ1))− f(x2(s− σ1))|ds

+
∫ t

t2

R(s)Q2(s)|g(x1(s− σ2))− g(x2(s− σ2))|ds

≤ p1‖x1 − x2‖

+ L2‖x1 − x2‖{
∫ ∞

t

R(s)[Q1(s) + Q2(s)]ds +
∫ t

t2

R(s)[Q1(s) + Q2(s)]ds}

= ‖x1 − x2‖{p1 + L2

∫ ∞

t1

R(s)[Q1(s) + Q2(s)]ds}

= ‖x1 − x2‖{p1 + L2
3(1− p1)

4L2
}

=
3 + p1

4
‖x1 − x2‖ = q1‖x1 − x2‖, where we used sup norm.

This immediately implies that

‖(T2x1)(t)− (T2x2)(t)‖ ≤ q1‖x1 − x2‖,

where in view of (6), q1 < 1, which proves that T2 is a contraction mapping,
consequently T2 has the unique fixed point x, which is obviously a positive solution
of (E).
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(ii). Suppose (7) holds. Choose constants N3 ≥ M3 > 0 such that

0 < M3 < 1 + p2 and N3 >
4
3
.

Set
A3 = {x ∈ X : M3 ≤ x(t) ≤ N3, t ≥ t0}.

Define L3, α1, β1, α2, β2 as in Theorem 1 with A3 instead of A1. Choose a
t3 > t0 + ρ sufficiently large such that

−1 <
3p2 − 1

4
≤ p(t) ≤ 0, t ≥ t3(13) ∫ ∞

t3

R(s)[Q1(s) + Q2(s)]ds <
3(1 + p2)

4L3
,(14)

0 ≤
∫ ∞

t3

R(s)[α1Q1(s)− β2Q2(s)]ds < (1 + p2)(
3
4
N3 − 1), and(15) ∫ ∞

t3

R(s)[β1Q1(s)− α2Q2(s)]ds ≥ 0.(16)

Define a mapping T3 : A3 → X as follows

(T3x)(t) =



1 + p2 − p(t)x(t− τ)
+R(t)

∫∞
t

[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds

+
∫ t

t3
R(s)[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds, t ≥ t3,

(T3x)(t3) t0 ≤ t ≤ t3.

Clearly, T3x is continuous. For every x ∈ A3 and t ≥ t3, using (13) and (15) we
get

(T3x)(t)

≤ 1 + p2 −
3p2 − 1

4
N3 +

∫ ∞

t3

R(s)[α1Q1(s)− β2Q2(s)]ds

≤ 1 + p2 −
3p2 − 1

4
N3 + (1 + p2)(

3
4
N3 − 1)

= N3.

Furthermore, in view of (16) we have

(T3x)(t)

≥ 1 + p2 + R(t)
∫ ∞

t

[β1Q1(s)− α2Q2(s)]ds +
∫ t

t3

R(s)[β1Q1(s)− α2Q2(s)]ds

≥ 1 + p2 > M3.
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Thus, we proves that T3A3 ⊂ A3. Since A3 is a bounded, closed and convex subset of
X, we have t0 prove that T3 is a contraction mapping on A3 to apply the contraction
principle.

Now, for x1, x2 ∈ A3 and t ≥ t3, in view of (14) we have

|(T3x1)(t)− (T3x2)(t)|

≤ −p2‖x1 − x2‖+ L3‖x1 − x2‖
∫ ∞

t3

R(s)[Q1(s) + Q2(s)]ds

≤ ‖x1 − x2‖{−p2 +
3(1 + p2)

4
} =

3− p2

4
‖x1 − x2‖

= q2‖x1 − x2‖, where we used sup norm.

This immediately implies

‖(T3x1)(t)− (T3x2)(t)‖ ≤ q2‖x1 − x2‖,

where in view of (7), q2 < 1. This proves that T3 is a contraction mapping. conse-
quently, T3 has the unique fixed point x, which is obviously a positive solution of
(E). This completes the proof of Theorem 2. �

Theorem 3. Suppose that conditions (c1) − (c3) hold and if one of the following
two conditions is satisfied:

(i) p(t) > 1 eventually, and 1 < p2 ≤ p1 < p2
2 < +∞;(17)

(ii) p(t) < −1 eventually, and −∞ < p2 ≤ p1 < −1,(18)

where p1 and p2 are defined as in theorem 2. Then (E) has a non-oscillatory
solution.

Proof. (i). Suppose that (17) holds. Set 0 < ε < p2 − 1 be sufficiently small such
that

(19) 1 < p2 − ε < p1 + ε < (p2 − ε)2.

Then

(20)
1

p2 − ε
<

p2 − ε

p1 + ε
.

Choose constants N4 ≥ M4 > 0 such that

1
p2 − ε

< N4 <
p2 − ε

p1 + ε
, and(21)

0 < M4 ≤
1

p1 + ε
− 1

p2 − ε
N4.(22)

Let X be the set as in theorem 1. Set

A4 = {x ∈ X : M4 ≤ x(t) ≤ N4, t ≥ t0}.
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Choose a t4 > t0 + ρ sufficiently large such that

p2 − ε ≤ p(t) ≤ p1 + ε for t ≥ t4,(23) ∫ ∞

t4

R(s)[Q1(s) + Q2(s)]ds <
p1 + p2

L4(p1 + ε)
,(24)

0 ≤
∫ ∞

t4

R(s)[α1Q1(s) + β2Q2(s)]ds ≤ (p2 − ε)N4 − 1, and(25) ∫ ∞

t4

R(s)[β1Q1(s)− α2Q2(s)]ds ≥ 0,(26)

where α1, β1, α2, β2, L4 are defined as in theorem 1, but with A4 instead of A1.

Define a mapping T4 : A4 → X as follows

(T4x)(t) =



1
p(t+τ) −

1
p(t+τ)x(t + τ)

+R(t+τ)
p(t+τ)

∫∞
t+τ

[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds

+ 1
p(t+τ)

∫ t+τ

t4
R(s)[Q1(s)f(x(s− σ1))

−Q2(s)g(x(s− σ2))]ds, t ≥ t4,

(T4x)(t4), t0 ≤ t ≤ t4,

where t + τ ≥ t0 + max{σ1, σ2}. Clearly, T4x is continuous. For every x ∈ A4 and
t ≥ t4, using (25) we get

(T4x)(t) ≤ 1
p2 − ε

+
1

p2 − ε

∫ ∞

t4

R(s)[α1Q1(s)− β2Q2(s)]ds

≤ 1
p2 − ε

+
1

p2 − ε
[(p2 − ε)N4 − 1] = N4.

Furthermore, in view of (21)and (26) we have

(T4x)(t) ≥ 1
p1 + ε

− 1
p2 − ε

N4 +
1

p1 + ε
R(t + τ)

∫ ∞

t+τ

[β1Q1(s)− α2Q2(s)]ds

1
p1 + ε

∫ t+τ

t4

R(s)[β1Q1(s)− α2Q2(s)]ds

≥ M4.

Thus, we proved that T4A4 ⊂ A4. Since A4 is a bounded, closed and convex
subset of X, we have t0 prove that T4 is a contraction mapping on A4 to apply the
contraction principle.
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Now, for x1, x2 ∈ A4 and t ≥ t4, in view of (24) we have

|(T4x1)(t)− (T4x2)(t)|

≤ − 1
p1 + ε

‖x1 − x2‖+
L4

p2 − ε
‖x1 − x2‖.

∫ ∞

t4

R(s)[Q1(s) + Q2(s)]ds

≤ ‖x1 − x2‖{−
1

p1 + ε
+

1
p2 − ε

(1 +
p2 − ε

p1 + ε
)}

=
1

p2 − ε
‖x1 − x2‖ = q3‖x1 − x2‖,

where we used sup norm. This immediately implies that

‖(T4x1)(t)− (T4x2)(t)‖ ≤ q3‖x1 − x2‖.

In view of (20), q3 < 1 which proves that T4 is a contraction mapping. consequently,
T4 has the unique fixed point x, which is obviously a positive solution of (E).

(ii) Suppose that (18) holds, set 0 < δ < −(1 + p2) be sufficiently small such
that

(27) p2 − δ < p1 + δ < −1.

Choose constant N5 ≥ M5 > 0 such that

(28) M5 <
−1

1 + p2 − δ
<

−1
1 + p1 + δ

< N5.

Let X be the set as in theorem 1 set

A4 = {x ∈ X : M4 ≤ x(t) ≤ M4, t ≥ t0}

Choose a t5 > t0 + ρ sufficiently large such that (c3) holds and

p2 − δ < p(t) < p1 + δ for t ≥ t5(29) ∫ ∞

t5

R(s)[Q1(s) + Q2(s)]ds < −1 + p1 + δ

L5
,(30)

0 ≤
∫ ∞

t5

R(s)[α1Q1 − β2Q2]ds ≤ p1 + δ

p2 − δ
[1 + M5(1 + p2 − δ)],(31) ∫ ∞

t5

R(s)[β1Q1(s)− α2Q2(s)]ds ≥ 0,(32)

where α1, β1, α2, β2, L5 are defined as in theorem 1 with A5 instead of A1.
Define a mapping T5 → X as follows

(T5X)(t) =


−1

p(t+τ) −
x(t+τ)
p(t+τ)

+R(t+τ)
p(t+τ)

∫∞
t+τ

[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds

+ 1
p(t+τ)

∫ t+τ

t5
R(s)[Q1(s)f(x(s− σ1))−Q2(s)g(x(s− σ2))]ds, t ≥ t5,

(T5x)(t), t0 ≤ t ≤ t5,
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where t + τ ≥ t0 + max{σ1, σ2}. Clearly, T5x is continuous, for every x ∈ A5 and
t ≥ t5, using (c3) and (32) we get

(T5X)(t) ≤ −1
p1 + δ

+
1

p1 + δ
N5 +

R(t + τ)
p2 − δ

∫ ∞

t+τ

[β1Q1(s)− α2Q2(s)]ds

+
1

p2 − δ

∫ t+τ

t5

[β1Q1(s)− α2Q2(s)]ds

≤ −1
p1 + δ

+
−1

p1 + δ
N5 < N5.

Since the first inequality of (28). Furthermore, in view of (28) and (31) we have

(T5X)(t) ≥ −1
p2 − δ

+
−1

p2 − δ
M5 +

1
p1 + δ

∫ ∞

t5

R(s)[α1Q1(s)− β2Q2(s)]ds

≥ −1
p2 − δ

+
−1

p2 − δ
M5 +

1
p1 + δ

· p1 + δ

p2 − δ
[1 + M5(1 + p2 − δ)] = M5.

Thus, we proved that T5A5 ⊂ A5. Since A5 is a bounded, closed and convex
subset of X, we have t0 prove that T5 is a contraction mapping on A5 to apply the
contraction principle.

Now, for x1, x2 ∈ A5 and t ≥ t5, in view of (30) we get

|(T5x1)(t)− (T5x2)(t)|

≤ − 1
p1 + δ

|x1(t + τ)− x2(t + τ)|

+
R(t + τ)
p(t + τ)

∫ ∞

t+τ

Q1(s)[f(x1(s− σ1))− f(x2(s− σ1))]ds

+
R(t + τ)
p(t + τ)

∫ ∞

t+τ

Q2(s)[g(x1(s− σ2))− g(x2(s− σ2))]ds

+
1

p(t + τ)

∫ t+τ

t5

R(s)Q1(s)[f(x1(s− σ1))− f(x2(s− σ1))]ds

+
1

p(t + τ)

∫ t+τ

t5

R(s)Q2(s)[g(x1(s− σ2))− g(x2(s− σ2))]ds

≤ − 1
p1 + δ

‖x1 − x2‖ −
L5

p2 − δ
‖x1 − x2‖

×
{∫ ∞

t+τ

R(s)[Q1(s) + Q2(s)]ds +
∫ t+τ

t5

R(s)[Q1(s) + Q2(s)]ds
}

≤ ‖x1 − x2‖ · {−
1

p1 + δ
− L5

p2 − δ

∫ ∞

t5

R(s)[Q1(s) + Q2(s)]ds}

< ‖x1 − x2‖ · {−
1

p1 + δ
+

1 + p1 + δ

p2 − δ
}

= q4‖x1 − x2‖,
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where we used sup norm. This immediately implies that

‖(T5x1)(t)− (T5x2)(t)‖ ≤ q4‖x1 − x2‖,

where in view of (27), q4 < 1 which proved that T5 is a contraction mapping. Con-
sequently, T5 has the unique fixed point x, which is obviously a positive solution of
(E). This completes the proof of theorem 3. �

Remark. If f(x(t)) = g(x(t)) = x(t), r(t) = 1 and p(t) = p = const., then theorem
2 and 3 improve the theorem of Kulenovic and Hadziomerspahic ([6]).
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