Existence of Nonoscillatory Solution of Second Order Nonlinear Neutral Delay Equations

Lin Shi-Zhong
Department of Mathematics, Hainan Normal University, Haikou 571158, China
e-mail: szlin@mail.hainnu.edu.cn
Qu Ying
Department of Economic Mathematics, Centre Finance $8 \mathcal{E}$ Economic University, Beijing 100081, China
Yu Yuan-Hong
Institute of Applied Mathematics, Chinese Academy of Sciences,Beijing 100080, China

Abstract. In this paper, we study nonoscillatory solutions of a class of second order nonlinear neutral delay differential equations with positive and negative coefficients. Some sufficient conditions for existence of nonoscillatory solutions are obtained.

1. Introduction

Consider the second order nonlinear neutral delay differential equation with positive and negative coefficients

$$
\begin{equation*}
\left[r(t)(x(t)+p(t) x(t-\tau))^{\prime}\right]^{\prime}+Q_{1}(t) f\left(x\left(t-\sigma_{1}\right)\right)-Q_{2}(t) g\left(x\left(t-\sigma_{2}\right)\right)=0 \tag{E}
\end{equation*}
$$

where $t \geq t_{0}, \tau \in(0, \infty), \sigma_{1}, \sigma_{2} \in[0, \infty), p, Q_{1}, Q_{2}, r \in C\left(\left[t_{0}, \infty\right), R\right), f, g \in$ $C(R, R)$. Throughout this paper, we assume that
$\left(c_{1}\right) f$ and g satisfy local Lipschitz Condition, and $x f(x)>0, x g(x)>0$, for $x \neq 0$.
$\left(c_{2}\right) r(t)>0, Q_{i} \geq 0, \int^{\infty} R(t) Q_{i}(t) d t<\infty,(i=1,2)$, where $R(t)=\int_{t_{0}}^{t} \frac{1}{r(s)} d s$.
$\left(c_{3}\right) a Q_{1}(t)-Q_{2}(t)$ s eventually nonnegative for every $a>0$.
Second order neutral delay differential equations have applications in problems dealing with vibrating masses attaches to an elastic bar and in some variational problems (see Hale [5]).

Received November 29, 2004, and, in revised form, August 29, 2005.
2000 Mathematics Subject Classification: 34K15.
Key words and phrases: nonoscillation, neutral delay equation.
Supported by the NSF Education Department of Hainan Province (hjkj200317) and NSF of Hainan Province(80403).

Let $u \in C\left(\left[t_{0}-\rho, \infty\right), R\right)$, where $\rho=\max \left\{\tau, \sigma_{1}, \sigma_{2}\right\}$, be a given function and let y_{0} be a given constant. Using the method of steps, equation (E) has a unique solution $x \in C\left(\left[t_{0}-\rho, \infty\right), R\right)$, in the sense that both $x(t)+p(t) x(t-\tau)$ and $r(t)(x(t)+p(t) x(t-\tau))^{\prime}$ are continuously differentiable for $t \geq t_{0}, x(t)$ satisfies equation (E) and

$$
x(s)=u(s) \text { for } s \in\left[t_{0}-\rho, t_{0}\right],\left.\quad(x(t)+p(t) x(t-\tau))^{\prime}\right|_{t=t_{0}}=y_{0}
$$

For further questions concerning existence and uniqueness of solutions of neutral delay differential equations, (see Hale [5]).

A solution of equation (E) is called oscillatory if it has arbitrarily large zeros, and otherwise it is non-oscillatory.

We observe that the oscillatory and asymptotic behavior of solutions for second order neutral and non-neutral delay differential equations has been studied in many papers, e.g. [1]-[4], [6]-[10]. The second order neutral equation (E) received much less attention, which is due mainly to the technical difficulties arising in its analysis. See [1], [2], [4] for reviews of this theory.

This paper was motivated by recent paper [6], where there the authors give a criterion for the existence of non-oscillatory solution of second order linear neutral delay equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}[x(t)+p(t) x(t-\tau)]+Q_{1}(t) x\left(t-\sigma_{1}\right)-Q_{2}(t) x\left(t-\sigma_{2}\right)=0 \tag{1}
\end{equation*}
$$

where $p \in R, \tau \in(0, \infty), \sigma_{1}, \sigma_{2} \in[0, \infty), Q_{1}, Q_{2} \in C\left(\left[t_{0}, \infty\right), R^{+}\right)$. The purpose of this paper is to present some new criteria for the existence of non-oscillatory solution of (E), which extend results in [6], [7].

2. Main results

Our main results are the following:
Theorem 1. Suppose that Conditions $\left(c_{1}\right)-\left(c_{3}\right)$ hold and that there exists a constant p_{0} such that

$$
\begin{equation*}
|p(t)| \leq p_{0}<\frac{1}{2} \quad \text { eventually } \tag{1}
\end{equation*}
$$

Then (E) had a non-oscillatory solution.
Proof. Choose constants $N_{1} \geq M_{1}>0$ such that

$$
\begin{equation*}
\frac{1}{1-p_{0}}<N_{1} \leq \frac{1-M_{1}}{p_{0}}<\frac{1}{p_{0}} \tag{2}
\end{equation*}
$$

Let X be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the sup norm. Set

$$
A_{1}=\left\{x \in X: M_{1} \leq x(t) \leq N_{1}, t \geq t_{0}\right\}
$$

Let $L_{f}\left(A_{1}\right), L_{g}\left(A_{1}\right)$ denote Lipschitz constants of functions f, g on the set A_{1}, respectively, and

$$
\begin{array}{lll}
L_{1}=\max \left\{L_{f}\left(A_{1}\right), L_{g}\left(A_{1}\right)\right\}, & \alpha_{1}=\max _{x \in A_{1}}\{f(x)\}, & \beta_{1}=\min _{x \in A_{1}}\{f(x)\}, \\
& \alpha_{2}=\max _{x \in A_{1}}\{g(x)\}, & \beta_{2}=\min _{x \in A_{1}}\{g(x)\} .
\end{array}
$$

Choose a $t_{1}>t_{0}+\rho, \rho=\max \left\{\tau, \sigma_{1}, \sigma_{2}\right\}$. Sufficiently large such that

$$
\begin{gathered}
a Q_{1}(t)-Q_{2}(t) \geq 0 \text { for } t \geq t_{1} \text { and } a>0 \\
|p(t)| \leq p_{0}<\frac{1}{2} \text { for } t \geq t_{1}
\end{gathered}
$$

$$
\begin{align*}
\int_{t_{1}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s & <\frac{1-p_{0}}{L_{1}} \tag{3}\\
0 \leq \int_{t_{1}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s & \leq\left(1-p_{0}\right) N_{1}-1, \text { and } \tag{4}\\
\int_{t_{1}}^{\infty} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s & \geq 0 \tag{5}
\end{align*}
$$

Define a mapping $T_{1}: A_{1} \rightarrow X$ as follows

$$
\left(T_{1} x\right)(t)= \begin{cases}1-p(t) x(t-\tau) & \\ +R(t) \int_{t}^{\infty}\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{1}\right)\right)\right] d s & \\ +\int_{t_{1}}^{t} R(s)\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{1}\right)\right)\right] d s, & t \geq t_{1} \\ \left(T_{1} x\right)\left(t_{1}\right), & t_{0} \leq t \leq t_{1}\end{cases}
$$

Clearly, $T_{1} x$ is continuous. For every $x \in A_{1}$ and $t \geq t_{1}$, using (1) and (4) we get

$$
\left(T_{1} x\right)(t) \leq 1+p_{0} N_{1}+\int_{t_{1}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s \leq N_{1}, \quad t>t_{1}
$$

On the other hand, in view of (1), (2) and (5) we have

$$
\left(T_{1} x\right)(t) \geq 1-p_{0} N_{1} \geq M_{1}, \quad t>t_{1}
$$

Thus we proved that $T_{1} A_{1} \subset A_{1}$. Since A_{1} is a bounded, closed and convex subset of X we have to prove that T_{1} is a contraction mapping on A_{1} to apply the contract ion principle.

Now, for $x_{1}, x_{2} \in A_{1}$ and $t \geq t_{1}$, in view of (3) we have

$$
\begin{aligned}
& \left|\left(T_{1} x_{1}\right)(t)-\left(T_{1} x_{2}\right)(t)\right| \\
\leq & p_{0}\left|x_{1}(t-\tau)-x_{2}(t-\tau)\right|+R(t) \int_{t}^{\infty} Q_{1}(s)\left|f\left(x_{1}\left(s-\sigma_{1}\right)\right)-f\left(x_{2}\left(s-\sigma_{1}\right)\right)\right| d s \\
& +R(t) \int_{t}^{\infty} Q_{2}(s)\left|g\left(x_{1}\left(s-\sigma_{2}\right)\right)-g\left(x_{2}\left(s-\sigma_{2}\right)\right)\right| d s \\
& +\int_{t_{1}}^{t} R(s) Q_{1}(s)\left|f\left(x_{1}\left(s-\sigma_{1}\right)\right)-f\left(x_{2}\left(s-\sigma_{1}\right)\right)\right| d s \\
& +\int_{t_{1}}^{t} R(s) Q_{2}(s)\left|g\left(x_{1}\left(s-\sigma_{2}\right)\right)-g\left(x_{2}\left(s-\sigma_{2}\right)\right)\right| d s \\
\leq & p_{0}\left\|x_{1}-x_{2}\right\| \\
& +L_{1}\left\|x_{1}-x_{2}\right\|\left\{\int_{t}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s+\int_{t_{1}}^{t} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s\right\} \\
= & \left\|x_{1}-x_{2}\right\|\left\{p_{0}+L_{1} \int_{t_{1}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s\right\} \\
= & q_{0}\left\|x_{1}-x_{2}\right\|,
\end{aligned}
$$

where we used sup norm. This immediately implies that

$$
\left\|T_{1} x_{1}-T_{1} x_{2}\right\| \leq q_{0}\left\|x_{1}-x_{2}\right\|,
$$

where in view of (3), $q_{0}<1$, which proves that T_{1} is a contraction mapping. Consequently T_{1} has the unique fixed point x, which is obviously a positive solution of (E). This completes the proof of Theorem 1.
Theorem 2. Suppose that conditions $\left(c_{1}\right)-\left(c_{3}\right)$ hold, and if one of the following two conditions is satisfied:
(i) $p(t) \geq 0$ eventually, and $0<p_{1}<1$;
(ii) $p(t) \leq 0$ eventually, and $-1<p_{2}<0$,
where $p_{1}=\lim _{t \rightarrow \infty} \sup P(t), p_{2}=\lim _{t \rightarrow \infty} \inf P(t)$. Then (E) has a nonoscillatory solution.
Proof. (i). Suppose (6) hold. Choose constants $N_{2} \geq M_{2}>0$ such that

$$
\begin{equation*}
1-p_{1}<N_{2} \leq \frac{4}{3 p_{1}+1}\left[\left(1-p_{1}\right)-M_{2}\right] . \tag{8}
\end{equation*}
$$

Let X be the set as in Theorem 1. Set

$$
A_{2}=\left\{x \in X: M_{2} \leq x(t) \leq N_{2}, \quad t \geq t_{0}\right\} .
$$

Define

$$
\begin{array}{ll}
L_{2}=\max \left\{L_{f}\left(A_{2}\right), L_{g}\left(A_{2}\right)\right\}, \quad \alpha_{1}=\max _{x \in A_{2}}\{f(x)\}, \quad \beta_{1}=\min _{x \in A_{2}}\{f(x)\}, \\
& \alpha_{2}=\max _{x \in A_{2}}\{g(x)\}, \quad \beta_{2}=\min _{x \in A_{2}}\{g(x)\}
\end{array}
$$

where $L_{f}\left(A_{2}\right), L_{g}\left(A_{2}\right)$ are Lipschitz constants of functions f, g on the set A_{2}, respectively.

Choose a $t_{2}>t_{0}+\rho$ sufficiently large such that

$$
\begin{align*}
0 \leq p(t)<\frac{1+3 p_{1}}{4} & \text { for } t \geq t_{2} \tag{9}\\
\int_{t_{2}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s & <\frac{3\left(1-p_{1}\right)}{4 L_{2}} \tag{10}\\
0 \leq \int_{t_{2}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s & \leq N_{2}+\left(p_{1}-1\right), \text { and } \tag{11}\\
\int_{t_{2}}^{\infty} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s & \geq 0 \tag{12}
\end{align*}
$$

Define a mapping $T_{2}: A_{2} \rightarrow X$ as follows

$$
\left(T_{2} x\right)(t)= \begin{cases}1-p_{1}-p(t) x(t-\tau) & \\ +R(t) \int_{t}^{\infty}\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s & \\ +\int_{t_{2}}^{t} R(s)\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s, & t \geq t_{2} \\ & \\ \left(T_{2} x\right)\left(t_{2}\right), & t_{0} \leq t \leq t_{2}\end{cases}
$$

Clearly, $T_{2} x$ is continuous. For every $x \in A_{2}$ and $t \geq t_{2}$, using $\left(c_{3}\right)$ and (11) we get

$$
\begin{aligned}
& \left(T_{2} x\right)(t) \\
= & 1-p_{1}-p(t) x(t-\tau)+R(t) \int_{t}^{\infty}\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s \\
& +\int_{t_{2}}^{t} R(s)\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s \\
\leq & \left.1-p_{1}+\int_{t}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s+\int_{t_{2}}^{t} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s\right\} \\
= & 1-p_{1}+\int_{t_{2}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s \leq N_{2}, \quad t \geq t_{2} .
\end{aligned}
$$

Furthermore, in view of (8) and (9) we have

$$
\begin{aligned}
& \left(T_{2} x\right)(t) \\
\geq & 1-p_{1}-\frac{1+3 p_{1}}{4} N_{2}+R(t) \int_{t}^{\infty}\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
& +\int_{t_{2}}^{t} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
\geq & 1-p_{1}-\frac{1+3 p_{1}}{4} \frac{4}{1+3 p_{1}}\left[\left(1-p_{1}\right)-M_{2}\right]=M_{2}, \quad t \geq t_{2}
\end{aligned}
$$

Thus we proved that $T_{2} A_{2} \subset A_{2}$. Since A_{2} is a bounded, closet and convex subset of X we have to prove that T_{2} is a contraction mapping on A_{2} to apply the contraction principle.

Now for $x_{1}, x_{2} \in A_{2}$ and $t \geq t_{2}$ we have

$$
\begin{aligned}
&\left|\left(T_{2} x_{1}\right)(t)-\left(T_{2} x_{2}\right)(t)\right| \\
& \leq \quad p_{1}\left|x_{1}(t-\tau)-x_{2}(t-\tau)\right|+R(t) \int_{t}^{\infty} Q_{1}(s)\left|f\left(x_{1}\left(s-\sigma_{1}\right)\right)-f\left(x_{2}\left(s-\sigma_{1}\right)\right)\right| d s \\
&+R(t) \int_{t}^{\infty} Q_{2}(s)\left|g\left(x_{1}\left(s-\sigma_{2}\right)\right)-g\left(x_{2}\left(s-\sigma_{2}\right)\right)\right| d s \\
&+\int_{t_{2}}^{t} R(s) Q_{1}(s)\left|f\left(x_{1}\left(s-\sigma_{1}\right)\right)-f\left(x_{2}\left(s-\sigma_{1}\right)\right)\right| d s \\
&+\int_{t_{2}}^{t} R(s) Q_{2}(s)\left|g\left(x_{1}\left(s-\sigma_{2}\right)\right)-g\left(x_{2}\left(s-\sigma_{2}\right)\right)\right| d s \\
& \leq \quad p_{1}\left\|x_{1}-x_{2}\right\| \\
&+L_{2}\left\|x_{1}-x_{2}\right\|\left\{\int_{t}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s+\int_{t_{2}}^{t} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s\right\} \\
&=\quad\left\|x_{1}-x_{2}\right\|\left\{p_{1}+L_{2} \int_{t_{1}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s\right\} \\
&=\left\|x_{1}-x_{2}\right\|\left\{p_{1}+L_{2} \frac{3\left(1-p_{1}\right)}{4 L_{2}}\right\} \\
&= \frac{3+p_{1}}{4}\left\|x_{1}-x_{2}\right\|=q_{1}\left\|x_{1}-x_{2}\right\|, \quad \text { where we used sup norm. }
\end{aligned}
$$

This immediately implies that

$$
\left\|\left(T_{2} x_{1}\right)(t)-\left(T_{2} x_{2}\right)(t)\right\| \leq q_{1}\left\|x_{1}-x_{2}\right\|
$$

where in view of $(6), q_{1}<1$, which proves that T_{2} is a contraction mapping, consequently T_{2} has the unique fixed point x, which is obviously a positive solution of (E).
(ii). Suppose (7) holds. Choose constants $N_{3} \geq M_{3}>0$ such that

$$
0<M_{3}<1+p_{2} \text { and } N_{3}>\frac{4}{3}
$$

Set

$$
A_{3}=\left\{x \in X: M_{3} \leq x(t) \leq N_{3}, t \geq t_{0}\right\}
$$

Define $L_{3}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ as in Theorem 1 with A_{3} instead of A_{1}. Choose a $t_{3}>t_{0}+\rho$ sufficiently large such that

$$
\begin{align*}
& -1<\frac{3 p_{2}-1}{4} \leq p(t) \leq 0, \quad t \geq t_{3} \tag{13}\\
& \int_{t_{3}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s<\frac{3\left(1+p_{2}\right)}{4 L_{3}} \tag{14}\\
& 0 \leq \int_{t_{3}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s<\left(1+p_{2}\right)\left(\frac{3}{4} N_{3}-1\right), \quad \text { and } \tag{15}\\
& \int_{t_{3}}^{\infty} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \geq 0 \tag{16}
\end{align*}
$$

Define a mapping $T_{3}: A_{3} \rightarrow X$ as follows

$$
\left(T_{3} x\right)(t)= \begin{cases}1+p_{2}-p(t) x(t-\tau) & \\ +R(t) \int_{t}^{\infty}\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s & \\ +\int_{t_{3}}^{t} R(s)\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s, & t \geq t_{3} \\ \left(T_{3} x\right)\left(t_{3}\right) & t_{0} \leq t \leq t_{3}\end{cases}
$$

Clearly, $T_{3} x$ is continuous. For every $x \in A_{3}$ and $t \geq t_{3}$, using (13) and (15) we get

$$
\begin{aligned}
& \left(T_{3} x\right)(t) \\
\leq & 1+p_{2}-\frac{3 p_{2}-1}{4} N_{3}+\int_{t_{3}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s \\
\leq & 1+p_{2}-\frac{3 p_{2}-1}{4} N_{3}+\left(1+p_{2}\right)\left(\frac{3}{4} N_{3}-1\right) \\
= & N_{3} .
\end{aligned}
$$

Furthermore, in view of (16) we have

$$
\begin{aligned}
& \left(T_{3} x\right)(t) \\
\geq & 1+p_{2}+R(t) \int_{t}^{\infty}\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s+\int_{t_{3}}^{t} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
\geq & 1+p_{2}>M_{3} .
\end{aligned}
$$

Thus, we proves that $T_{3} A_{3} \subset A_{3}$. Since A_{3} is a bounded, closed and convex subset of X, we have t_{0} prove that T_{3} is a contraction mapping on A_{3} to apply the contraction principle.

Now, for $x_{1}, x_{2} \in A_{3}$ and $t \geq t_{3}$, in view of (14) we have

$$
\begin{aligned}
& \left|\left(T_{3} x_{1}\right)(t)-\left(T_{3} x_{2}\right)(t)\right| \\
\leq & -p_{2}\left\|x_{1}-x_{2}\right\|+L_{3}\left\|x_{1}-x_{2}\right\| \int_{t_{3}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s \\
\leq & \left\|x_{1}-x_{2}\right\|\left\{-p_{2}+\frac{3\left(1+p_{2}\right)}{4}\right\}=\frac{3-p_{2}}{4}\left\|x_{1}-x_{2}\right\| \\
= & q_{2}\left\|x_{1}-x_{2}\right\|, \quad \text { where we used sup norm. }
\end{aligned}
$$

This immediately implies

$$
\left\|\left(T_{3} x_{1}\right)(t)-\left(T_{3} x_{2}\right)(t)\right\| \leq q_{2}\left\|x_{1}-x_{2}\right\|,
$$

where in view of $(7), q_{2}<1$. This proves that T_{3} is a contraction mapping. consequently, T_{3} has the unique fixed point x, which is obviously a positive solution of (E). This completes the proof of Theorem 2.

Theorem 3. Suppose that conditions $\left(c_{1}\right)-\left(c_{3}\right)$ hold and if one of the following two conditions is satisfied:
(i) $p(t)>1$ eventually, and $1<p_{2} \leq p_{1}<p_{2}^{2}<+\infty$;
(ii) $p(t)<-1$ eventually, and $-\infty<p_{2} \leq p_{1}<-1$,
where p_{1} and p_{2} are defined as in theorem 2. Then (E) has a non-oscillatory solution.

Proof. (i). Suppose that (17) holds. Set $0<\varepsilon<p_{2}-1$ be sufficiently small such that

$$
\begin{equation*}
1<p_{2}-\varepsilon<p_{1}+\varepsilon<\left(p_{2}-\varepsilon\right)^{2} . \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1}{p_{2}-\varepsilon}<\frac{p_{2}-\varepsilon}{p_{1}+\varepsilon} . \tag{20}
\end{equation*}
$$

Choose constants $N_{4} \geq M_{4}>0$ such that

$$
\begin{align*}
& \frac{1}{p_{2}-\varepsilon}<N_{4}<\frac{p_{2}-\varepsilon}{p_{1}+\varepsilon}, \quad \text { and } \tag{21}\\
& 0<M_{4} \leq \frac{1}{p_{1}+\varepsilon}-\frac{1}{p_{2}-\varepsilon} N_{4} \tag{22}
\end{align*}
$$

Let X be the set as in theorem 1. Set

$$
A_{4}=\left\{x \in X: M_{4} \leq x(t) \leq N_{4}, t \geq t_{0}\right\}
$$

Choose a $t_{4}>t_{0}+\rho$ sufficiently large such that

$$
\begin{align*}
& p_{2}-\varepsilon \leq p(t) \leq p_{1}+\varepsilon \text { for } t \geq t_{4}, \tag{23}\\
& \int_{t_{4}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s<\frac{p_{1}+p_{2}}{L_{4}\left(p_{1}+\varepsilon\right)}, \tag{24}\\
& 0 \leq \int_{t_{4}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)+\beta_{2} Q_{2}(s)\right] d s \leq\left(p_{2}-\varepsilon\right) N_{4}-1, \text { and } \tag{25}\\
& \int_{t_{4}}^{\infty} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \geq 0, \tag{26}
\end{align*}
$$

where $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, L_{4}$ are defined as in theorem 1 , but with A_{4} instead of A_{1}.
Define a mapping $T_{4}: A_{4} \rightarrow X$ as follows

$$
\left(T_{4} x\right)(t)= \begin{cases}\frac{1}{p(t+\tau)}-\frac{1}{p(t+\tau)} x(t+\tau) & \\ +\frac{R(t+\tau)}{p(t+\tau)} \int_{t+\tau}^{\infty}\left(Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s & \\ +\frac{1}{p(t+\tau)} \int_{t_{4}}^{t+\tau} R(s)\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)\right. & t \geq t_{4}, \\ \left.-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s, & t_{0} \leq t \leq t_{4}, \\ \left(T_{4} x\right)\left(t_{4}\right), & \end{cases}
$$

where $t+\tau \geq t_{0}+\max \left\{\sigma_{1}, \sigma_{2}\right\}$. Clearly, $T_{4} x$ is continuous. For every $x \in A_{4}$ and $t \geq t_{4}$, using (25) we get

$$
\begin{aligned}
\left(T_{4} x\right)(t) & \leq \frac{1}{p_{2}-\varepsilon}+\frac{1}{p_{2}-\varepsilon} \int_{t_{4}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s \\
& \leq \frac{1}{p_{2}-\varepsilon}+\frac{1}{p_{2}-\varepsilon}\left[\left(p_{2}-\varepsilon\right) N_{4}-1\right]=N_{4} .
\end{aligned}
$$

Furthermore, in view of (21) and (26) we have

$$
\begin{aligned}
\left(T_{4} x\right)(t) & \geq \frac{1}{p_{1}+\varepsilon}-\frac{1}{p_{2}-\varepsilon} N_{4}+\frac{1}{p_{1}+\varepsilon} R(t+\tau) \int_{t+\tau}^{\infty}\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
& \frac{1}{p_{1}+\varepsilon} \int_{t_{4}}^{t+\tau} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
\geq & M_{4} .
\end{aligned}
$$

Thus, we proved that $T_{4} A_{4} \subset A_{4}$. Since A_{4} is a bounded, closed and convex subset of X, we have t_{0} prove that T_{4} is a contraction mapping on A_{4} to apply the contraction principle.

Now, for $x_{1}, x_{2} \in A_{4}$ and $t \geq t_{4}$, in view of (24) we have

$$
\begin{aligned}
& \left|\left(T_{4} x_{1}\right)(t)-\left(T_{4} x_{2}\right)(t)\right| \\
\leq & -\frac{1}{p_{1}+\varepsilon}\left\|x_{1}-x_{2}\right\|+\frac{L_{4}}{p_{2}-\varepsilon}\left\|x_{1}-x_{2}\right\| \cdot \int_{t_{4}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s \\
\leq & \left\|x_{1}-x_{2}\right\|\left\{-\frac{1}{p_{1}+\varepsilon}+\frac{1}{p_{2}-\varepsilon}\left(1+\frac{p_{2}-\varepsilon}{p_{1}+\varepsilon}\right)\right\} \\
= & \frac{1}{p_{2}-\varepsilon}\left\|x_{1}-x_{2}\right\|=q_{3}\left\|x_{1}-x_{2}\right\|,
\end{aligned}
$$

where we used sup norm. This immediately implies that

$$
\left\|\left(T_{4} x_{1}\right)(t)-\left(T_{4} x_{2}\right)(t)\right\| \leq q_{3}\left\|x_{1}-x_{2}\right\| .
$$

In view of (20), $q_{3}<1$ which proves that T_{4} is a contraction mapping. consequently, T_{4} has the unique fixed point x, which is obviously a positive solution of (E).
(ii) Suppose that (18) holds, set $0<\delta<-\left(1+p_{2}\right)$ be sufficiently small such that

$$
\begin{equation*}
p_{2}-\delta<p_{1}+\delta<-1 \tag{27}
\end{equation*}
$$

Choose constant $N_{5} \geq M_{5}>0$ such that

$$
\begin{equation*}
M_{5}<\frac{-1}{1+p_{2}-\delta}<\frac{-1}{1+p_{1}+\delta}<N_{5} . \tag{28}
\end{equation*}
$$

Let X be the set as in theorem 1 set

$$
A_{4}=\left\{x \in X: M_{4} \leq x(t) \leq M_{4}, \quad t \geq t_{0}\right\}
$$

Choose a $t_{5}>t_{0}+\rho$ sufficiently large such that (c_{3}) holds and

$$
\begin{align*}
& p_{2}-\delta<p(t)<p_{1}+\delta \text { for } t \geq t_{5} \tag{29}\\
& \int_{t_{5}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s<-\frac{1+p_{1}+\delta}{L_{5}}, \tag{30}\\
0 \leq & \int_{t_{5}}^{\infty} R(s)\left[\alpha_{1} Q_{1}-\beta_{2} Q_{2}\right] d s \leq \frac{p_{1}+\delta}{p_{2}-\delta}\left[1+M_{5}\left(1+p_{2}-\delta\right)\right], \tag{31}\\
& \int_{t_{5}}^{\infty} R(s)\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \geq 0, \tag{32}
\end{align*}
$$

where $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, L_{5}$ are defined as in theorem 1 with A_{5} instead of A_{1}.
Define a mapping $T_{5} \rightarrow X$ as follows

$$
\left(T_{5} X\right)(t)= \begin{cases}\frac{-1}{p(t \tau)}-\frac{x(t+\tau)}{p(t+\tau)} \\ +\frac{R(t+\tau)}{p(t+\tau)} \int_{t+\tau}^{\infty}\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s \\ +\frac{1}{p(t+\tau)} \int_{t_{5} \tau}^{t+\tau} R(s)\left[Q_{1}(s) f\left(x\left(s-\sigma_{1}\right)\right)-Q_{2}(s) g\left(x\left(s-\sigma_{2}\right)\right)\right] d s, & t \geq t_{5}, \\ \left(T_{5} x\right)(t), & t_{0} \leq t \leq t_{5},\end{cases}
$$

where $t+\tau \geq t_{0}+\max \left\{\sigma_{1}, \sigma_{2}\right\}$. Clearly, $T_{5} x$ is continuous, for every $x \in A_{5}$ and $t \geq t_{5}$, using (c_{3}) and (32) we get

$$
\begin{aligned}
\left(T_{5} X\right)(t) \leq & \frac{-1}{p_{1}+\delta}+\frac{1}{p_{1}+\delta} N_{5}+\frac{R(t+\tau)}{p_{2}-\delta} \int_{t+\tau}^{\infty}\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
& +\frac{1}{p_{2}-\delta} \int_{t_{5}}^{t+\tau}\left[\beta_{1} Q_{1}(s)-\alpha_{2} Q_{2}(s)\right] d s \\
\leq & \frac{-1}{p_{1}+\delta}+\frac{-1}{p_{1}+\delta} N_{5}<N_{5} .
\end{aligned}
$$

Since the first inequality of (28). Furthermore, in view of (28) and (31) we have

$$
\begin{aligned}
\left(T_{5} X\right)(t) & \geq \frac{-1}{p_{2}-\delta}+\frac{-1}{p_{2}-\delta} M_{5}+\frac{1}{p_{1}+\delta} \int_{t_{5}}^{\infty} R(s)\left[\alpha_{1} Q_{1}(s)-\beta_{2} Q_{2}(s)\right] d s \\
& \geq \frac{-1}{p_{2}-\delta}+\frac{-1}{p_{2}-\delta} M_{5}+\frac{1}{p_{1}+\delta} \cdot \frac{p_{1}+\delta}{p_{2}-\delta}\left[1+M_{5}\left(1+p_{2}-\delta\right)\right]=M_{5}
\end{aligned}
$$

Thus, we proved that $T_{5} A_{5} \subset A_{5}$. Since A_{5} is a bounded, closed and convex subset of X, we have t_{0} prove that T_{5} is a contraction mapping on A_{5} to apply the contraction principle.

Now, for $x_{1}, x_{2} \in A_{5}$ and $t \geq t_{5}$, in view of (30) we get

$$
\begin{aligned}
& \left|\left(T_{5} x_{1}\right)(t)-\left(T_{5} x_{2}\right)(t)\right| \\
\leq & -\frac{1}{p_{1}+\delta}\left|x_{1}(t+\tau)-x_{2}(t+\tau)\right| \\
& +\frac{R(t+\tau)}{p(t+\tau)} \int_{t+\tau}^{\infty} Q_{1}(s)\left[f\left(x_{1}\left(s-\sigma_{1}\right)\right)-f\left(x_{2}\left(s-\sigma_{1}\right)\right)\right] d s \\
& +\frac{R(t+\tau)}{p(t+\tau)} \int_{t+\tau}^{\infty} Q_{2}(s)\left[g\left(x_{1}\left(s-\sigma_{2}\right)\right)-g\left(x_{2}\left(s-\sigma_{2}\right)\right)\right] d s \\
& +\frac{1}{p(t+\tau)} \int_{t_{5}}^{t+\tau} R(s) Q_{1}(s)\left[f\left(x_{1}\left(s-\sigma_{1}\right)\right)-f\left(x_{2}\left(s-\sigma_{1}\right)\right)\right] d s \\
& +\frac{1}{p(t+\tau)} \int_{t_{5}}^{t+\tau} R(s) Q_{2}(s)\left[g\left(x_{1}\left(s-\sigma_{2}\right)\right)-g\left(x_{2}\left(s-\sigma_{2}\right)\right)\right] d s \\
\leq \quad & -\frac{1}{p_{1}+\delta}\left\|x_{1}-x_{2}\right\|-\frac{L_{5}}{p_{2}-\delta}\left\|x_{1}-x_{2}\right\| \\
& \times\left\{\int_{t+\tau}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s+\int_{t_{5}}^{t+\tau} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s\right\} \\
\leq & \left\|x_{1}-x_{2}\right\| \cdot\left\{-\frac{1}{p_{1}+\delta}-\frac{L_{5}}{p_{2}-\delta} \int_{t_{5}}^{\infty} R(s)\left[Q_{1}(s)+Q_{2}(s)\right] d s\right\} \\
< & \left\|x_{1}-x_{2}\right\| \cdot\left\{-\frac{1}{p_{1}+\delta}+\frac{1+p_{1}+\delta}{p_{2}-\delta}\right\} \\
= & q_{4}\left\|x_{1}-x_{2}\right\|,
\end{aligned}
$$

where we used sup norm. This immediately implies that

$$
\left\|\left(T_{5} x_{1}\right)(t)-\left(T_{5} x_{2}\right)(t)\right\| \leq q_{4}\left\|x_{1}-x_{2}\right\|,
$$

where in view of $(27), q_{4}<1$ which proved that T_{5} is a contraction mapping. Consequently, T_{5} has the unique fixed point x, which is obviously a positive solution of (E). This completes the proof of theorem 3.
Remark. If $f(x(t))=g(x(t))=x(t), r(t)=1$ and $p(t)=p=$ const., then theorem 2 and 3 improve the theorem of Kulenovic and Hadziomerspahic ([6]).

References

[1] D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, New York, 1991.
[2] L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[3] A. Elbert, Oscillation and nonoscillation criteria for linear second order differential equations, J. Math. Anal. Appl., 226(1998), 207-219.
[4] I. Györi and G. Ladas, Oscillation Theory for Delay Differential Equations with Applications, Oxford Univ. Press, London, 1991.
[5] J. K. Hale, Theory of Functional Differential Equations, Springer-verlag, New York, 1977.
[6] M. R. S. Kulenovic and S. Hadziomerspahic, Existence of nonoscillatory solution of second order linear neutral delay equation, J. Math. Anal. Appl., 228(1998), 436-448.
[7] W. T. Li, Positive solutions of second order nonlinear differential equations, J. Math. Anal. Appl., 221(1998), 326-337.
[8] Zheng-Rong Liu and Yuan-Hong Yu, Nonoscillatory solutions of second order functional differential equations, Kyuntpook Math. J., 37(1997), 19-26.

