• Title/Summary/Keyword: Nonlinear differential equations

Search Result 605, Processing Time 0.031 seconds

A Study on the Design of a Looper Strip Controller and its Robustness for Hot Strip Mills Using ILQ Control (역최적제어(ILQ)를 이용한 열간압연시스템의 루퍼 장력제어기 설계 및 견실성 연구)

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.93-98
    • /
    • 2001
  • This paper studies on the design of an ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between each stand plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. The mathematical model for looper is firstly obtained by Taylor's linearization of nonlinear differential equations, where it is given as a linear and time invariant state-space equation. Secondly, a looper servo controller is designed by ILQ control algorithm, which is an inverse problem of LQ(Linear Quadratic optimal control) control. By tunning control gain arbitration parameters and time constants, it is shown that the ILQ looper servo controller has the performance that makes well to follow desired trajectories of both strip tension and looper angle.

  • PDF

FUZZY CONTROL OF THREE LINKS A ROBOTIC MANIPULATOR

  • Kumbla, Kishan;Jamshidi, Mo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1410-1413
    • /
    • 1993
  • This paper presents the application of fuzzy control to three links of a Rhino robot and compares its performance to traditional PD control. The dynamics of motion of robot links are governed by nonlinear differential equations. The fuzzy controller, being an adaptive technique, gives better performance than the traditional linear PD controller over a typical operational range. The fuzzy controller reaches the desired position with no overshoot, which is unlikely with the PD controller.

  • PDF

An Analytic Analysis for a Two-Dimensional Floating and Fluid-Filled Membrane Structure (부유식 유체저장용 2차원 막구조물의 이론적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.32-37
    • /
    • 2009
  • An analytic similarity shape solution was studied for a two-dimensional floating and fluid-filled membrane structure. The static shape of a membrane structure can be expressed as a set of nonlinear ordinary differential equations. The integration of curvature leads to an analytic solution for the shape, which contains unknown boundary values. Matching the upper and lower shapes at the free surface incorporated with their buoyancy allowed the unknowns to be determined. Some characteristic values of similarity shapes were evaluated and shapes are illustrated for various density ratios and volume efficiency ratios.

INVESTIGATION OF REACTOR CONDITION MONITORING AND SINGULARITY DETECTION VIA WAVELET TRANSFORM AND DE-NOISING

  • Kim, Ok-Joo;Cho, Nan-Zin;Park, Chang-Je;Park, Moon-Ghu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-230
    • /
    • 2007
  • Wavelet theory was applied to detect a singularity in a reactor power signal. Compared to Fourier transform, wavelet transform has localization properties in space and frequency. Therefore, using wavelet transform after de-noising, singular points can easily be found. To test this theory, reactor power signals were generated using the HANARO(a Korean multi-purpose research reactor) dynamics model consisting of 39 nonlinear differential equations contaminated with Gaussian noise. Wavelet transform decomposition and de-noising procedures were applied to these signals. It was possible to detect singular events such as a sudden reactivity change and abrupt intrinsic property changes. Thus, this method could be profitably utilized in a real-time system for automatic event recognition(e.g., reactor condition monitoring).

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

PARAMETRIC EQUATIONS OF SPECIAL CURVES LYING ON A REGULAR SURFACE IN EUCLIDEAN 3-SPACE

  • El Haimi, Abderrazzak;Chahdi, Amina Ouazzani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 2021
  • In this paper, we determine position vector of a line of curvature of a regular surface which is relatively normal-slant helix, with respect to Darboux frame. Then, a vector differential equation is established by means Darboux formulas, in the case of the geodesic torsion is vanishes. In terms of solution, we determine the parametric representation of a line of curvature which is relatively normal-slant helix, with respect to standard frame in Euclidean 3-space. Thereafter, we apply this result to find the position vector of a line of curvature which is isophote curve.

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

Water carrying iron (iii) oxide (Fe3O4) ferrofluid flow and heat transfer due to deceleration of a rotating plate

  • Bhandari, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.679-690
    • /
    • 2022
  • This research effort examines the flow behavior and heat transfer assessment of water carrying iron (iii) oxide magnetic fluid due to a rotating and moving plane lamina under the influence of magnetic dipole. The effect of rotational viscosity and magnetic body force is taken into consideration in the present study. The involvement of the moving disk makes a significant contribution to the velocity distribution and heat transfer in rotational flow. Vertical movement of the disk keeps the flow unsteady and the similarity transformation converts the governing equation of unsteady flow into nonlinear coupled differential equations. The non-dimensional equation in the present system is solved through the finite element procedure. Optimizing the use of physical parameters described in this flow, such results can be useful in the rotating machinery industries for heat transfer enhancement.

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips

  • Momeni-Khabisi, Hamed;Tahani, Masoud
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.427-440
    • /
    • 2022
  • In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.

Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects

  • Karegar, Mohammad;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.129-137
    • /
    • 2022
  • Dynamic response of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.