DOI QR코드

DOI QR Code

Water carrying iron (iii) oxide (Fe3O4) ferrofluid flow and heat transfer due to deceleration of a rotating plate

  • Bhandari, Anupam (Department of Mathematics, School of Engineering, University of Petroleum & Energy Studies (UPES))
  • Received : 2021.09.07
  • Accepted : 2022.03.19
  • Published : 2022.06.10

Abstract

This research effort examines the flow behavior and heat transfer assessment of water carrying iron (iii) oxide magnetic fluid due to a rotating and moving plane lamina under the influence of magnetic dipole. The effect of rotational viscosity and magnetic body force is taken into consideration in the present study. The involvement of the moving disk makes a significant contribution to the velocity distribution and heat transfer in rotational flow. Vertical movement of the disk keeps the flow unsteady and the similarity transformation converts the governing equation of unsteady flow into nonlinear coupled differential equations. The non-dimensional equation in the present system is solved through the finite element procedure. Optimizing the use of physical parameters described in this flow, such results can be useful in the rotating machinery industries for heat transfer enhancement.

Keywords

References

  1. Abbas, Z. and Hasnain, J. (2017), "Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus", Result. Phys., 7, 574-580. https://doi.org/10.1016/j.rinp.2016.12.022.
  2. Ahmed, J., Khan, M. and Ahmad, L. (2019), "Impact of nanoparticles and radiative heat flux in von Karman swirling flow of Maxwell fluid", Chin. J. Phys., 62, 86-98. https://doi.org/10.1016/j.cjph.2019.09.030.
  3. Alsabery, A.I., Ismael, M.A., Chamkha, A.J. and Hashim, I. (2020), "Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body", Int. Commun. Heat Mass Transf., 110, 104442. https://doi.org/10.1016/j.icheatmasstransfer.2019.104442.
  4. Ariel, P.D. (2002), "On computation of MHD flow near a rotating disk", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 82(4), 235-246. https://doi.org/10.1002/1521-4001(200204)82:4<235::AID-ZAMM235>3.0.CO;2-L.
  5. Ariel, P.D. (2003), "On the flow of an elastico-viscous fluid near a rotating disk", J. Comput. Appl. Math., 154(1), 1-25. https://doi.org/10.1016/S0377-0427(02)00744-6.
  6. Attia, H.A. (2007), "Rotating disk flow and heat transfer of a conducting non-newtonian fluid with suction-injection and ohmic heating", J. Brazil. Soc. Mech. Sci. Eng., 29(2), 168-173. https://doi.org/10.1590/S1678-58782007000200006.
  7. Attia, H.A. (1998), "Unsteady MHD flow near a rotating porous disk with uniform suction or injection", Fluid Dyn. Res., 23(5), 283-290. https://doi.org/10.1016/S0169-5983(98)80011-7.
  8. Attia, H.A. (2007), "On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating", Chem. Eng. Commun. 194(10), 1396-1407. https://doi.org/10.1080/00986440701401545.
  9. Attia, H.A. and Aboul-Hassan, A.L. (2001), "Effect of hall current on the unsteady MHD flow due to a rotating disk with uniform suction or injection", Appl. Math. Model., 25(12), 1089-1098. https://doi.org/10.1016/S0307-904X(01)00033-6.
  10. Bachok, N., Ishak, A. and Pop, I. (2011a), "Flow and heat transfer over a rotating porous disk in a nanofluid", Physica B: Phys. Condens. Matter., 406(9), 1767-1772. https://doi.org/10.1016/j.physb.2011.02.024.
  11. Bacri, J.C., Perzynski, R., Shliomis, M.I. and Burde, G.I. (1995), "Negative-viscosity effect in a magnetic fluid", Phys. Rev. Lett., 75(11), 2128-2131. https://doi.org/10.1103/PhysRevLett.75.2128.
  12. Benton, E.R. (1966), "On the flow due to a rotating disk", J. Fluid Mech., 24(4), 781-800. https://doi.org/10.1017/S0022112066001009.
  13. Bhandari, A. (2020a), "Study of magnetoviscous effects on ferrofluid flow", Eur. Phys. J. Plus, 135(7), 1-14. https://doi.org/10.1140/epjp/s13360-020-00563-w.
  14. Bhandari, A. (2020b), "Study of ferrofluid flow in a rotating system through mathematical modeling", Math. Comput. Simul., 178, 290-306. https://doi.org/10.1016/j.matcom.2020.06.018.
  15. Bhandari, A. and Kumar, V. (2015), "Effect of magnetization force on ferrofluid flow due to a rotating disk in the presence of an external magnetic field", Eur. Phys. J. Plus, 130(4), 1-12. https://doi.org/10.1140/epjp/i2015-15062-0.
  16. Blums, E., TSebers, A.O., Cebers, A.O. and Maiorov, M.M. (1997), Magnetic Fluids, Walter de Gruyter.
  17. Chamkha, A.J., Issa, C. and Khanafer, K. (2002), "Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation", Int. J. Therm. Sci., 41(1), 73-81. https://doi.org/10.1016/S1290-0729(01)01305-9.
  18. Cochran, W.G. (1934), "The flow due to a rotating disc", Math. Proc. Cambridge Philos. Soc., 30(3), 365-375. https://doi.org/10.1017/S0305004100012561.
  19. Dogonchi, A.S., Ismael, M.A., Chamkha, A.J. and Ganji, D.D. (2019), "Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall", J. Therm. Anal. Calorim., 135(6), 3485-3497. https://doi.org/10.1007/s10973-018-7520-4.
  20. Esmaeili, H.A., Khaki, M., Abbasi, M., Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018a), "Structural Engineering and Mechanics", Struct. Eng. Mech., 67(1), 21. https://doi.org/10.12989/sem.2018.67.1.021.
  21. Esmaeili, H.A., Khaki, M., Abbasi, M., Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018b), "Structural Engineering and Mechanics", Struct. Eng. Mech., 68(3), 359. https://doi.org/10.12989/sem.2018.68.3.359.
  22. Ghalambaz, M., Doostani, A., Izadpanahi, E. and Chamkha, A.J. (2020), "Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity", J. Therm. Anal. Calorim., 139(3), 2321-2336. https://doi.org/10.1007/s10973-019-08617-7.
  23. Hafeez, A., Khan, M., Ahmed, A. and Ahmed, J. (2020), "Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory", Appl. Math. Mech., 41(7), 1083-1094. https://doi.org/10.1007/s10483-020-2629-9.
  24. Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G. (2014), "Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet", Cent Eur. J. Phys., 12(12), 862-871. https://doi.org/10.2478/s11534-014-0522-3.
  25. Hayat, T., Rashid, M., Imtiaz, M. and Alsaedi, A. (2015), "Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip", AIP Adv., 5(6), 067169. https://doi.org/10.1063/1.4923380.
  26. Hayat, T., Rashid, M., Imtiaz, M. and Alsaedi, A. (2017), "Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions", Int. J. Heat Mass Transf., 113, 96-105. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.018.
  27. Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., Khalesi, J., Mousavisani, S. and Ganji, D.D. (2019), "Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation", Case Stud. Therm. Eng., 14, 100482. https://doi.org/10.1016/j.csite.2019.100482.
  28. Khan, J.A., Mustafa, M., Hayat, T., Turkyilmazoglu, M. and Alsaedi, A. (2017), "Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno's model", Int. J. Numer. Meth. Heat Fluid Flow, 27(1), 221-234. https://doi.org/10.1108/HFF-08-2015-0328.
  29. Khodabandeh, E., Toghraie, D., Chamkha, A., Mashayekhi, R., Akbari, O. and Rozati, S.A. (2019), "Energy saving with using of elliptic pillows in turbulent flow of two-phase water-silver nanofluid in a spiral heat exchanger", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 2025-2049. https://doi.org/10.1108/HFF-10-2018-0594.
  30. Mehryan, S.A.M., Ghalambaz, M., Chamkha, A.J. and Izadi, M. (2020), "Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model", Powder Technol., 367, 443-455. https://doi.org/10.1016/j.powtec.2020.04.005.
  31. Modather, M., Rashad, A.M. and Chamkha, A.J. (2009), "An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium", Turk. J. Eng. Environ. Sci., 33(4), 245-257. https://doi.org/10.3906/muh-0906-31.
  32. Muller, O., Hahn, D. and Liu, M. (2006), "Non-Newtonian behaviour in ferrofluids and magnetization relaxation", J. Phys. Conden. Matt., 18, S2623-S2632. https://doi.org/10.1088/0953-8984/18/38/S06.
  33. Mustafa, M. (2017), "MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model", Int. J. Heat Mass Transf., 108, 1910-1916. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.064.
  34. Neuringer, J.L. (1966), "Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients", Int. J. Nonlin. Mech., 1(2), 123-137. https://doi.org/10.1016/0020-7462(66)90025-4.
  35. Qayyum, S., Ijaz Khan, M., Hayat, T., Alsaedi, A. and Tamoor, M. (2018), "Entropy generation in dissipative flow of Williamson fluid between two rotating disks", Int. J. Heat Mass Transf., 127, 933-942. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.034.
  36. Ram, P. and Bhandari, A. (2013), "Negative viscosity effects on ferrofluid flow due to a rotating disk", Int. J. Appl. Electromagnet. Mech., 41(4), 467-478. https://doi.org/10.3233/JAE-121637.
  37. Ram, P. and Bhandari, A. (2013), "Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk", Result. Phys., 3, 55-60. https://doi.org/10.1016/j.rinp.2013.03.002.
  38. Rashidi, M.M., Abelman, S. amd Mehr, N.F. (2013), "Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid", Int. J. Heat Mass Transf., 62, 515-525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.
  39. Rasool, G., Zhang, T., Chamkha, A.J., Shafiq, A., Tlili, I. and Shahzadi, G. (2020), "Entropy generation and consequences of binary chemical reaction on mhd darcy-forchheimer williamson nanofluid flow over non-linearly stretching surface", Entropy, 22(1), 18. https://doi.org/10.3390/e22010018.
  40. Rosensweig, R.E. (1997), Ferrohydrodynamics, Courier Corporation.
  41. Selimefendigil, F. and Chamkha, A.J. (2019), "MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 1637-1660. https://doi.org/10.1108/HFF-10-2018-0566.
  42. Selimefendigil, F., Ismael, M.A. and Chamkha, A.J. (2017), "Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder", Int. J. Mech. Sci., 124-125, 95-108. https://doi.org/10.1016/j.ijmecsci.2017.03.007.
  43. Selimefendigil, F., Oztop, H.F. and Chamkha, A.J. (2019), "Role of magnetic field on forced convection of nanofluid in a branching channel", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 1755-1772. https://doi.org/10.1108/HFF-10-2018-0568.
  44. Sheikholeslami, M. and Shehzad, S A. (2018), "Numerical analysis of Fe3O4-H2O nanofluid flow in permeable media under the effect of external magnetic source", Int. J. Numer. Meth. Heat Fluid Flow, 118, 182-192. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.113.
  45. Shliomis, M.I. and Morozov, K.I. (1994), "Negative viscosity of ferrofluid under alternating magnetic field", Phys. Fluid., 6(8), 2855-2861. https://doi.org/10.1063/1.868108.
  46. Sibanda, P. and Makinde, O.D. (2010), "On steady MHD flow and heat transfer past a rotating disk in a porous medium with ohmic heating and viscous dissipation", Int. J. Numer. Meth. Heat Fluid Flow, 20(3), 269-285. https://doi.org/10.1108/09615531011024039.
  47. Siddiqui, A.A. and Turkyilmazoglu, M. (2019), "A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids", Micromach., 10(6), 373. https://doi.org/10.3390/mi10060373.
  48. Takhar, H.S., Chamkha, A.J. and Nath, G. (2002), "MHD flow over a moving plate in a rotating fluid with magnetic field, hall currents and free stream velocity", Int. J. Eng. Sci., 40(13), 1511-1527. https://doi.org/10.1016/S0020-7225(02)00016-2.
  49. Tayebi, T. and Chamkha, A.J. (2019), "Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block", Int. J. Numer. Meth. Heat Fluid Flow, 30(3), 1115-1136. https://doi.org/10.1108/HFF-04-2019-0350.
  50. Turkyilmazoglu, M. (2014), "Nanofluid flow and heat transfer due to a rotating disk", Comput. Fluid., 94, 139-146. https://doi.org/10.1016/j.compfluid.2014.02.009.
  51. Turkyilmazoglu, M. (2018), "Fluid flow and heat transfer over a rotating and vertically moving disk", Phys. Fluid., 30(6), 063605. https://doi.org/10.1063/1.5037460.
  52. Veera Krishna, M. and Chamkha, A.J. (2019), "Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium", Result. Phys., 15, 102652. https://doi.org/10.1016/j.rinp.2019.102652.