References
- Abbas, Z. and Hasnain, J. (2017), "Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus", Result. Phys., 7, 574-580. https://doi.org/10.1016/j.rinp.2016.12.022.
- Ahmed, J., Khan, M. and Ahmad, L. (2019), "Impact of nanoparticles and radiative heat flux in von Karman swirling flow of Maxwell fluid", Chin. J. Phys., 62, 86-98. https://doi.org/10.1016/j.cjph.2019.09.030.
- Alsabery, A.I., Ismael, M.A., Chamkha, A.J. and Hashim, I. (2020), "Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body", Int. Commun. Heat Mass Transf., 110, 104442. https://doi.org/10.1016/j.icheatmasstransfer.2019.104442.
- Ariel, P.D. (2002), "On computation of MHD flow near a rotating disk", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 82(4), 235-246. https://doi.org/10.1002/1521-4001(200204)82:4<235::AID-ZAMM235>3.0.CO;2-L.
- Ariel, P.D. (2003), "On the flow of an elastico-viscous fluid near a rotating disk", J. Comput. Appl. Math., 154(1), 1-25. https://doi.org/10.1016/S0377-0427(02)00744-6.
- Attia, H.A. (2007), "Rotating disk flow and heat transfer of a conducting non-newtonian fluid with suction-injection and ohmic heating", J. Brazil. Soc. Mech. Sci. Eng., 29(2), 168-173. https://doi.org/10.1590/S1678-58782007000200006.
- Attia, H.A. (1998), "Unsteady MHD flow near a rotating porous disk with uniform suction or injection", Fluid Dyn. Res., 23(5), 283-290. https://doi.org/10.1016/S0169-5983(98)80011-7.
- Attia, H.A. (2007), "On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating", Chem. Eng. Commun. 194(10), 1396-1407. https://doi.org/10.1080/00986440701401545.
- Attia, H.A. and Aboul-Hassan, A.L. (2001), "Effect of hall current on the unsteady MHD flow due to a rotating disk with uniform suction or injection", Appl. Math. Model., 25(12), 1089-1098. https://doi.org/10.1016/S0307-904X(01)00033-6.
- Bachok, N., Ishak, A. and Pop, I. (2011a), "Flow and heat transfer over a rotating porous disk in a nanofluid", Physica B: Phys. Condens. Matter., 406(9), 1767-1772. https://doi.org/10.1016/j.physb.2011.02.024.
- Bacri, J.C., Perzynski, R., Shliomis, M.I. and Burde, G.I. (1995), "Negative-viscosity effect in a magnetic fluid", Phys. Rev. Lett., 75(11), 2128-2131. https://doi.org/10.1103/PhysRevLett.75.2128.
- Benton, E.R. (1966), "On the flow due to a rotating disk", J. Fluid Mech., 24(4), 781-800. https://doi.org/10.1017/S0022112066001009.
- Bhandari, A. (2020a), "Study of magnetoviscous effects on ferrofluid flow", Eur. Phys. J. Plus, 135(7), 1-14. https://doi.org/10.1140/epjp/s13360-020-00563-w.
- Bhandari, A. (2020b), "Study of ferrofluid flow in a rotating system through mathematical modeling", Math. Comput. Simul., 178, 290-306. https://doi.org/10.1016/j.matcom.2020.06.018.
- Bhandari, A. and Kumar, V. (2015), "Effect of magnetization force on ferrofluid flow due to a rotating disk in the presence of an external magnetic field", Eur. Phys. J. Plus, 130(4), 1-12. https://doi.org/10.1140/epjp/i2015-15062-0.
- Blums, E., TSebers, A.O., Cebers, A.O. and Maiorov, M.M. (1997), Magnetic Fluids, Walter de Gruyter.
- Chamkha, A.J., Issa, C. and Khanafer, K. (2002), "Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation", Int. J. Therm. Sci., 41(1), 73-81. https://doi.org/10.1016/S1290-0729(01)01305-9.
- Cochran, W.G. (1934), "The flow due to a rotating disc", Math. Proc. Cambridge Philos. Soc., 30(3), 365-375. https://doi.org/10.1017/S0305004100012561.
- Dogonchi, A.S., Ismael, M.A., Chamkha, A.J. and Ganji, D.D. (2019), "Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall", J. Therm. Anal. Calorim., 135(6), 3485-3497. https://doi.org/10.1007/s10973-018-7520-4.
- Esmaeili, H.A., Khaki, M., Abbasi, M., Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018a), "Structural Engineering and Mechanics", Struct. Eng. Mech., 67(1), 21. https://doi.org/10.12989/sem.2018.67.1.021.
- Esmaeili, H.A., Khaki, M., Abbasi, M., Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018b), "Structural Engineering and Mechanics", Struct. Eng. Mech., 68(3), 359. https://doi.org/10.12989/sem.2018.68.3.359.
- Ghalambaz, M., Doostani, A., Izadpanahi, E. and Chamkha, A.J. (2020), "Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity", J. Therm. Anal. Calorim., 139(3), 2321-2336. https://doi.org/10.1007/s10973-019-08617-7.
- Hafeez, A., Khan, M., Ahmed, A. and Ahmed, J. (2020), "Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory", Appl. Math. Mech., 41(7), 1083-1094. https://doi.org/10.1007/s10483-020-2629-9.
- Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G. (2014), "Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet", Cent Eur. J. Phys., 12(12), 862-871. https://doi.org/10.2478/s11534-014-0522-3.
- Hayat, T., Rashid, M., Imtiaz, M. and Alsaedi, A. (2015), "Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip", AIP Adv., 5(6), 067169. https://doi.org/10.1063/1.4923380.
- Hayat, T., Rashid, M., Imtiaz, M. and Alsaedi, A. (2017), "Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions", Int. J. Heat Mass Transf., 113, 96-105. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.018.
- Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., Khalesi, J., Mousavisani, S. and Ganji, D.D. (2019), "Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation", Case Stud. Therm. Eng., 14, 100482. https://doi.org/10.1016/j.csite.2019.100482.
- Khan, J.A., Mustafa, M., Hayat, T., Turkyilmazoglu, M. and Alsaedi, A. (2017), "Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno's model", Int. J. Numer. Meth. Heat Fluid Flow, 27(1), 221-234. https://doi.org/10.1108/HFF-08-2015-0328.
- Khodabandeh, E., Toghraie, D., Chamkha, A., Mashayekhi, R., Akbari, O. and Rozati, S.A. (2019), "Energy saving with using of elliptic pillows in turbulent flow of two-phase water-silver nanofluid in a spiral heat exchanger", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 2025-2049. https://doi.org/10.1108/HFF-10-2018-0594.
- Mehryan, S.A.M., Ghalambaz, M., Chamkha, A.J. and Izadi, M. (2020), "Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model", Powder Technol., 367, 443-455. https://doi.org/10.1016/j.powtec.2020.04.005.
- Modather, M., Rashad, A.M. and Chamkha, A.J. (2009), "An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium", Turk. J. Eng. Environ. Sci., 33(4), 245-257. https://doi.org/10.3906/muh-0906-31.
- Muller, O., Hahn, D. and Liu, M. (2006), "Non-Newtonian behaviour in ferrofluids and magnetization relaxation", J. Phys. Conden. Matt., 18, S2623-S2632. https://doi.org/10.1088/0953-8984/18/38/S06.
- Mustafa, M. (2017), "MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model", Int. J. Heat Mass Transf., 108, 1910-1916. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.064.
- Neuringer, J.L. (1966), "Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients", Int. J. Nonlin. Mech., 1(2), 123-137. https://doi.org/10.1016/0020-7462(66)90025-4.
- Qayyum, S., Ijaz Khan, M., Hayat, T., Alsaedi, A. and Tamoor, M. (2018), "Entropy generation in dissipative flow of Williamson fluid between two rotating disks", Int. J. Heat Mass Transf., 127, 933-942. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.034.
- Ram, P. and Bhandari, A. (2013), "Negative viscosity effects on ferrofluid flow due to a rotating disk", Int. J. Appl. Electromagnet. Mech., 41(4), 467-478. https://doi.org/10.3233/JAE-121637.
- Ram, P. and Bhandari, A. (2013), "Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk", Result. Phys., 3, 55-60. https://doi.org/10.1016/j.rinp.2013.03.002.
- Rashidi, M.M., Abelman, S. amd Mehr, N.F. (2013), "Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid", Int. J. Heat Mass Transf., 62, 515-525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.
- Rasool, G., Zhang, T., Chamkha, A.J., Shafiq, A., Tlili, I. and Shahzadi, G. (2020), "Entropy generation and consequences of binary chemical reaction on mhd darcy-forchheimer williamson nanofluid flow over non-linearly stretching surface", Entropy, 22(1), 18. https://doi.org/10.3390/e22010018.
- Rosensweig, R.E. (1997), Ferrohydrodynamics, Courier Corporation.
- Selimefendigil, F. and Chamkha, A.J. (2019), "MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 1637-1660. https://doi.org/10.1108/HFF-10-2018-0566.
- Selimefendigil, F., Ismael, M.A. and Chamkha, A.J. (2017), "Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder", Int. J. Mech. Sci., 124-125, 95-108. https://doi.org/10.1016/j.ijmecsci.2017.03.007.
- Selimefendigil, F., Oztop, H.F. and Chamkha, A.J. (2019), "Role of magnetic field on forced convection of nanofluid in a branching channel", Int. J. Numer. Meth. Heat Fluid Flow, 30(4), 1755-1772. https://doi.org/10.1108/HFF-10-2018-0568.
- Sheikholeslami, M. and Shehzad, S A. (2018), "Numerical analysis of Fe3O4-H2O nanofluid flow in permeable media under the effect of external magnetic source", Int. J. Numer. Meth. Heat Fluid Flow, 118, 182-192. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.113.
- Shliomis, M.I. and Morozov, K.I. (1994), "Negative viscosity of ferrofluid under alternating magnetic field", Phys. Fluid., 6(8), 2855-2861. https://doi.org/10.1063/1.868108.
- Sibanda, P. and Makinde, O.D. (2010), "On steady MHD flow and heat transfer past a rotating disk in a porous medium with ohmic heating and viscous dissipation", Int. J. Numer. Meth. Heat Fluid Flow, 20(3), 269-285. https://doi.org/10.1108/09615531011024039.
- Siddiqui, A.A. and Turkyilmazoglu, M. (2019), "A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids", Micromach., 10(6), 373. https://doi.org/10.3390/mi10060373.
- Takhar, H.S., Chamkha, A.J. and Nath, G. (2002), "MHD flow over a moving plate in a rotating fluid with magnetic field, hall currents and free stream velocity", Int. J. Eng. Sci., 40(13), 1511-1527. https://doi.org/10.1016/S0020-7225(02)00016-2.
- Tayebi, T. and Chamkha, A.J. (2019), "Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block", Int. J. Numer. Meth. Heat Fluid Flow, 30(3), 1115-1136. https://doi.org/10.1108/HFF-04-2019-0350.
- Turkyilmazoglu, M. (2014), "Nanofluid flow and heat transfer due to a rotating disk", Comput. Fluid., 94, 139-146. https://doi.org/10.1016/j.compfluid.2014.02.009.
- Turkyilmazoglu, M. (2018), "Fluid flow and heat transfer over a rotating and vertically moving disk", Phys. Fluid., 30(6), 063605. https://doi.org/10.1063/1.5037460.
- Veera Krishna, M. and Chamkha, A.J. (2019), "Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium", Result. Phys., 15, 102652. https://doi.org/10.1016/j.rinp.2019.102652.