• Title/Summary/Keyword: Nonlinear Term

Search Result 552, Processing Time 0.026 seconds

Long-Term Prediction of Prestress in Concrete Bridge by Nonlinear Regression Analysis Method (비선형 회귀분석기법을 이용한 콘크리트 교량 프리스트레스의 장기 예측)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.507-515
    • /
    • 2006
  • The purpose of the paper is to propose a method to give a more accurate prediction of prestress changes in prestressed concrete(PSC) bridges. The statistical approach of the method is using the measurement data of the structural system to develop a nonlinear regression analysis. Long-term prediction of prestress is achieved using nonlinear regression analysis. The proposed method is applied to the prediction of prestress of an actual prestressed concrete box girder bridge. The present study represents that confidence interval of long-term prediction becomes progressively narrower with the increase of in-situ measurement data. Therefore, the numerical results prove that a more realistic long-term prediction of prestress changes in PSC structures can be achieved by employing the proposed method. The prediction results can be efficiently used to evaluate prestress during the service life of structure so that the remaining prestress exceeds the control criteria.

BOUNDARY VALUE PROBLEM FOR A CLASS OF THE SYSTEMS OF THE NONLINEAR ELLIPTIC EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • We show the existence of at least two nontrivial solutions for a class of the systems of the nonlinear elliptic equations with Dirichlet boundary condition under some conditions for the nonlinear term. We obtain this result by using the variational linking theory in the critical point theory.

  • PDF

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.

Analysis of nonlinear gain in modulation characteristics of semiconductor lasers (반도체 레이저의 변조특성에서 비선형 이득에 관한 연구)

  • 엄진섭;김창봉
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.93-100
    • /
    • 1998
  • In this paper we analyze the effect of nonlinear gain on laser modulation characteristics applying a small-signal analysis to the rate equation which includes a nonlinear gain term. Also we analyze the resonance frequency and the damping factor which determine laser modulation characteristics, define K factor which is the proportionality factor between resonance frequency and damping factor, and conclude that the decrease in K factor is due to increases in differential gain and no correlation between K factor and nonlinear gain is identified.

  • PDF

LOCAL EXISTENCE AND EXPONENTIAL DECAY OF SOLUTIONS FOR A NONLINEAR PSEUDOPARABOLIC EQUATION WITH VISCOELASTIC TERM

  • Nhan, Nguyen Huu;Nhan, Truong Thi;Ngoc, Le Thi Phuong;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.35-64
    • /
    • 2021
  • In this paper, we investigate an initial boundary value problem for a nonlinear pseudoparabolic equation. At first, by applying the Faedo-Galerkin, we prove local existence and uniqueness results. Next, by constructing Lyapunov functional, we establish a sufficient condition to obtain the global existence and exponential decay of weak solutions.

APPLICATION OF ROTHE'S METHOD TO A NONLINEAR WAVE EQUATION ON GRAPHS

  • Lin, Yong;Xie, Yuanyuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.745-756
    • /
    • 2022
  • We study a nonlinear wave equation on finite connected weighted graphs. Using Rothe's and energy methods, we prove the existence and uniqueness of solution under certain assumption. For linear wave equation on graphs, Lin and Xie [10] obtained the existence and uniqueness of solution. The main novelty of this paper is that the wave equation we considered has the nonlinear damping term |ut|p-1·ut (p > 1).

A New Robust Continuos VSCS by Saturation Function for Uncertain Nonlinear Plants (불확실 비선형 플랜트를 위한 포화 함수에 의한 새로운 강인한 연속 가변구조제어시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of the nonlinear system function is separated into the tow parts, i.e., state dependent term and state independent term for extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

Optimal Governor Response Power Flow with Nonlinear Interior Point Method (비선형 내점법을 이용한 최적 조속기 응동 조류계산)

  • Kim, Tae-Gyun;Lee, Byong-Joon;Song, Hwa-Chang;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1527-1534
    • /
    • 2007
  • This paper proposes a new concept of optimal governor-response power flow (OGPF) to obtain an optimal set of control parameters when the systems are in mid-term conditions after disturbances, ignoring the system dynamics. The idea of GOPF simply comes from the attempt to find an optimal solution of the governor-response power flow (GPF), which is a pre-exiting tool that is used to get power flow solutions that would exist several seconds after an event is applied. GPF incorporates the simplified model of governors in the systems into the power flow equations. This paper explains the concept of OGPF and depicts the OGPF formulation and application of a nonlinear interior point method as the solution technique. Also, this paper includes an example with New England 39-bus test system to illustrate the effectiveness of GOPF.

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

  • Zhang, H.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and $Gr\ddot{u}nwald$-Letnikov(G-L) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

  • PDF