References
- C.J. Amick, J.L. Bona and M.E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equs. 81(1) (1989), 1-49. https://doi.org/10.1016/0022-0396(89)90176-9
- A. Mahmood, N.A. Khan, C. Fetecau, M. Jamil and Q. Rubbab, Exact analytic solutions for the flow of second grade fluid between two longitudinally oscillating cylinders, J. Prime Research in Math., 5 (2009), 192-204.
- S. Asghar, T. Hayat and P. D. Ariel, Unsteady Couette flows in a second grade fluid with variable material properties, Commu. Nonlinear Sci. Numer. Simul., 14(1) (2009), 154-159. https://doi.org/10.1016/j.cnsns.2007.07.016
- T. Aziz and F.M. Mah, A note on the solutions of some nonlinear equations arising in third-grade fluid flows: An exact approach, The Scientific World Journal, 2014 (2014), Art. ID 109128, 7 pages.
- G. Barenblat, I. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24(5) (1960), 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
- T.B. Benjamin, J.L. Bona and J.J. Mahony, Models equation of long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1220) (1972), 47-78. https://doi.org/10.1098/rsta.1972.0032
- J.L. Bona and V.A. Dougalis. An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl. 75 (1980), 503-522. https://doi.org/10.1016/0022-247x(80)90098-0
- A. Bouziani, Solvability of nonlinear pseudoparabolic equation with a nonlocal boundary condition, Nonlinear Anal., 55 (2003), 883-904. https://doi.org/10.1016/j.na.2003.07.011
- A. Bouziani, Initial-boundary value problem for a class of pseudoparabolic equations with integral boundary conditions, J. Math. Anal. Appl., 291(2) (2004), 371-386. https://doi.org/10.1016/S0022-247X(03)00590-0
- Y. Cao, J. Yin and C. Wang, Cauchy problems of semilinear pseudoparabolic equations, J. Differential Equ., . 246(12) (2009), 4568-4590. https://doi.org/10.1016/j.jde.2009.03.021
- Y. Cao, J.X. Lin and Y.H. Li, One-dimensional viscous diffusion of higher order with gradient dependent potentials and sources, Acta. Math. Sin. 246(12) (2018), 4568-4590.
- M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, On the existence and the uniform decay of a hyperbolic, Southeast Asian Bull. Math., 24 (2000), 183-199. https://doi.org/10.1007/s10012-000-0183-6
- M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electronic J. Diffe. Equ., Vol. 2002(44) (2002), pp. 1-14.
- M.M. Cavalcanti, V.N. Domingos Cavalcanti and M.L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465. https://doi.org/10.1016/S0096-3003(03)00284-4
- D.Q. Dai and Y. Huang, A moment problem for one-dimensional nonlinear pseudoparabolic equation, J. Math. Anal. Appl., 328 (2007), 1057-1067. https://doi.org/10.1016/j.jmaa.2006.06.010
- T. Hayat, M. Khan and M. Ayub, Some analytical solutions for second grade fluid flows for cylindrical geometries, Math. Comput. Model., 43(1-2) (2006), 16-29. https://doi.org/10.1016/j.mcm.2005.04.009
- T. Hayat, F. Shahzad and M. Ayub, Analytical solution for the steady flow of the third grade fluid in a porous half space, Appl. Math. Model., 31(11) (2007), 2424-2432. https://doi.org/10.1016/j.apm.2006.09.008
- J.L. Lions, Quelques methodes de resolution des probl'emes aux limites non-lineaires, Dunod-Gauthier-Villars, Paris, 1969.
- N.T. Long and A.P.N. Dinh, On a nonlinear parabolic equation involving Bessel's operator associated with a mixed inhomogeneous condition, J. Comput. Appl. Math., 196(1) (2006), 267-284. https://doi.org/10.1016/j.cam.2005.07.024
- V.T.T. Mai, N.A. Triet, L.T.P. Ngoc and N.T. Long, Existence, blow-up and exponential decay for a nonlinear Kirchhoff-Carrier-Love equation with Dirichlet conditions, Nonlinear Funct. Anal. Appl., 25(4) (2020), 617-655 https://doi.org/10.22771/NFAA.2020.25.04.02
- L.A. Medeiros and M.M. Miranda, Weak solutions for a nonlinear dispersive equation, J. Math. Anal. Appl,. 59 (1977), 432-441. https://doi.org/10.1016/0022-247x(77)90071-3
- S.A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66. https://doi.org/10.1002/mana.200310104
- L.T.P. Ngoc, N.V. Y, A.P.N. Dinh and N.T. Long, On a nonlinear heat equation associated with Dirichlet-Robin conditions, Numerical Funct. Anal. Opti., 33(2) (2012), 166-189. https://doi.org/10.1080/01630563.2011.594198
- L.T.P. Ngoc, N.V. Y, T. M. Thuyet and N.T. Long, On a nonlinear heat equation with viscoelastic term associate with Robin conditions, Applicable Anal., 96(16) (2017), 2717-2736. https://doi.org/10.1080/00036811.2016.1238461
- L.T.P. Ngoc and N.T. Long, Exponential decay and blow-up for a system of nonlinear heat equations containing viscoelastic terms and associated with Robin-Dirichlet conditions, Elect. J. Diff, Equ., 2020(106) (2020), 1-26. https://doi.org/10.1186/s13662-019-2438-0
- V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356(7) (2004), 2739-2756. https://doi.org/10.1090/S0002-9947-03-03340-3
- J.E. Munoz-Rivera and D. Andrade, Exponential decay of nonlinear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci. 23 (2000), 41-61. https://doi.org/10.1002/(SICI)1099-1476(20000110)23:1<41::AID-MMA102>3.0.CO;2-B
- M. Sajid and T. Hayat, Series solution for steady flow of a third grade fluid through porous space, Transport in Porous Media, 71(2) (2008), 173-183. https://doi.org/10.1007/s11242-007-9118-3
- M.L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electr. J. Diff. Equ., 2001(73) (2001), 1-11.
- Y.D. Shang and B.L. Guo, On the problem of the existence of global solution for a class of nonlinear convolutional intergro-differential equation of pseudoparabolic type, Acta Math. Appl. Sin. 26(3) (2003), 512-524.
- R.E. Showalter and T.W. Ting, Asymptotic behavior of solutions of pseudo-parabolic partial differential equations, Annali di Matematica Pura ed Applicata, 90(4) (1971), 241-258. https://doi.org/10.1007/BF02415050
- R.E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3 (1972), 527-543. https://doi.org/10.1137/0503051
- R.E. Showater, Hilbert space methods for partial differential equations, Electr. J. Diff. Equ. Monograph 01, 1994.
- T.W. Ting, Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal., 14 (1963), 1-26. https://doi.org/10.1007/BF00250690
- L. Zhang, Decay of solution of generalized Benjamin-Bona-Mahony-Burgers equations in n-space dimensions, Nonlinear Anal., 25(12) (1995), 1343-1369. https://doi.org/10.1016/0362-546X(94)00252-D
- X. Zhu, F. Li and Y. Li, Global solutions and blow-up solutions to a class pseudoparabolic equations with nonlocal term, Appl. Math. Comput. 329 (2018), 38-51. https://doi.org/10.1016/j.amc.2018.02.003