• Title/Summary/Keyword: Non-uniqueness Problem

Search Result 40, Processing Time 0.024 seconds

Investigation on Method Avoiding Non-uniqueness of Direct Boundary Element Method in Acoustic Wave Radiation Problem (음향방사문제에서 직접경계요소법의 비유일성 회피방법에 관한 고찰)

  • Kim, Kook-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2328-2333
    • /
    • 2010
  • A direct boundary element method(DBEM) is widely applied for various acoustic wave problems. But this method has numerically non-unique solutions around the eigenfrequencies of the interior Dirichlet problem for the region enveloped with the acoustic boundary. A CHIEF method had been generally adopted to resolve the non-uniqueness problem and a new technique called ICA-Ring method has been suggested recently. In this paper, the characteristics of two techniques for avoiding the non-uniqueness of DBEM are examined and numerical codes embodying both techniques are developed. Numerical calculations are also carried out for an uniformly pulsating sphere, of which the results are investigated by including the comparisons with theoretical solutions.

A NOTE ON UNIQUENESS AND STABILITY FOR THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT

  • Kang, Hyeon-Bae;Seo, Jin-Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.781-791
    • /
    • 2001
  • We consider the inverse conductivity problem to identify the unknown conductivity $textsc{k}$ as well as the domain D. We show hat, unlike the case when $textsc{k}$ is known, even a two or three dimensional ball may not be identified uniquely if the conductivity constant $textsc{k}$ is not known. We find a necessary and sufficient condition on the Cauchy data (u│∂Ω, g) for the uniqueness in identification of $textsc{k}$ and D. We also discuss on failure of stability.

  • PDF

A GENERAL UNIQUENESS RESULT OF AN ENDEMIC STATE FOR AN EPIDEMIC MODEL WITH EXTERNAL FORCE OF INFECTION

  • Cha, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.597-608
    • /
    • 2007
  • We present a general uniqueness result of an endemic state for an S-I-R model with external force of infection. We reduce the problem of finding non-trivial steady state solutions to that of finding zeros of a real function of one variable so that we can easily prove the uniqueness of an endemic state. We introduce an assumption which was usually used to show stability of a non-trivial steady state. It turns out that such an assumption adopted from a stability analysis is crucial for proving the uniqueness as well, and the assumption holds for almost all cases in our model.

Uniqueness Criteria for Signal Reconstruction from Phase-Only Data (위상만을 이용한 신호복원의 유일성 판단법)

  • 이동욱;김영태
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • In this paper, we propose an alternate method for determining the uniqueness of the reconstruction of a complex sequence from its phase. Uniqueness constraints could be derived in terms of the zeros of a complex polynomial defined by the DFT of the sequence. However, rooting of complex polynomials of high order is a very difficult problem. Instead of finding zeros of a complex polynomial, the proposed uniqueness criteria show that non-singularity of a matrix can guarantee the uniqueness of the reconstruction of a complex sequence from its phase-only data. It has clear advantage over the rooting method in numerical stability and computational time.

  • PDF

Entire Functions That Share One Value With Their Derivatives

  • Lu, Feng;Xu, Junfeng
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.439-448
    • /
    • 2007
  • In the paper, we use the theory of normal family to study the problem on entire function that share a finite non-zero value with their derivatives and prove a uniqueness theorem which improve the result of J.P. Wang and H.X. Yi.

  • PDF

RISK-MINIMIZING HEDGING FOR A SPECIAL CONTINGENTS

  • YANG, JIANQI;JIANG, QIUYAN
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.5_6
    • /
    • pp.287-297
    • /
    • 2022
  • In this paper, we consider a risk-minimization hedging problem for a special European contingent claims. The existence and uniqueness of strategy are given constructively. Firstly, a non-standard European contingent is demonstrated as stochastic payment streams. Then the existence of the risk minimization strategy and also the uniqueness are proved under two kinds market information by using Galtchouk-Kunita-Watanabe decomposition and constructing a 0-achieving strategy risk-minimizing strategies in full information. And further, we have proven risk-minimizing strategies exists and is unique under restrict information by constructing a weakly mean-selffinancing strategy.

Order Structures of Compactifications in L-fuzzy Topological Spaces

  • Liu, Yingming;Luo, Maokang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.3-16
    • /
    • 1992
  • In this paper, we establish the conceptes of compactifications of a L-fuzzy topological space and a order relation in these compactifications. This order is a preorder. The existemce problem and the uniqueness problem of the largest compactifications are closely related to the mapping extension problem. We give out the largest compactifications and show the non-uniqueness of the largest compactifications in the preorder for a kind of spaces. Moreover, under some natural assumptions of separation axioms, we prove that the preorder is just a partial order, thus it ensures the uniqueness of the largest compactification. In addition. the related discussion involves the special properties of fuzzy product space, the latter seems to be independent interesting.

  • PDF

VALUE SHARING AND UNIQUENESS FOR THE POWER OF P-ADIC MEROMORPHIC FUNCTIONS

  • MENG, CHAO;LIU, GANG;ZHAO, LIANG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.39-50
    • /
    • 2018
  • In this paper, we deal with the uniqueness problem for the power of p-adic meromorphic functions. The results obtained in this paper are the p-adic analogues and supplements of the theorems given by Yang and Zhang [Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76(2008), 140-150], Chen, Chen and Li [Uniqueness of difference operators of meromorphic functions, J. Ineq. Appl. 2012(2012), Art 48], Zhang [Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367(2010), 401-408].

ON THE STUDY OF SOLUTION UNIQUENESS TO THE TASK OF DETERMINING UNKNOWN PARAMETERS OF MATHEMATICAL MODELS

  • Avdeenko, T.V.;Je, Hai-Gon
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.251-266
    • /
    • 2000
  • The problem of solution uniqueness to the task of determining unknown parameters of mathematical models from input-output observations is studied. This problem is known as structural identifiability problem. We offer a new approach for testing structural identifiability of linear state space models. The approach compares favorably with numerous methods proposed by other authors for two main reasons. First, it is formulated in obvious mathematical form. Secondly, the method does not involve unfeasible symbolic computations and thus allows to test identifiability of large-scale models. In case of non-identifiability, when there is a set of solutions to the task, we offer a method of computing functions of the unknown parameters which can be determined uniquely from input-output observations and later used as new parameters of the model. Such functions are called parametric functions capable of estimation. To develop the method of computation of these functions we use Lie group transformation theory. Illustrative example is given to demonstrate applicability of presented methods.

  • PDF

DELTA-SHOCK FOR THE NONHOMOGENEOUS PRESSURELESS EULER SYSTEM

  • Shiwei Li;Jianli Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.699-715
    • /
    • 2024
  • We study the Riemann problem for the pressureless Euler system with the source term depending on the time. By means of the variable substitution, two kinds of Riemann solutions including deltashock and vacuum are constructed. The generalized Rankine-Hugoniot relation and entropy condition of the delta-shock are clarified. Because of the source term, the Riemann solutions are non-self-similar. Moreover, we propose a time-dependent viscous system to show all of the existence, uniqueness and stability of solutions involving the delta-shock by the vanishing viscosity method.