• Title/Summary/Keyword: Non-linear error model.

검색결과 166건 처리시간 0.026초

비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구 (A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis)

  • 서성호;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

비선형과 선형 등온흡착식을 이용한 키토산비드의 구리와 인산염의 흡착특성 (Adsorption characteristic of Cu(II) and phosphate using non-linear and linear isotherm equation for chitosan bead)

  • 김태훈;안병렬
    • 상하수도학회지
    • /
    • 제34권3호
    • /
    • pp.201-210
    • /
    • 2020
  • 2 (Langmuir, Freundlich, Elovich, Temkin, and Dubinin-Radushkevich) and 3 (Sips and Redlich-Peterson)-parameter isotherm models were applied to evaluated for the applicability of adsorption of Cu(II) and/or phosphate isotherm using chitosan bead. Non-linear and linear isotherm adsorption were also compared on each parameter with coefficient of determination (R2). Among 2-parameter isotherms, non-linear Langmuir and Freundlich isotherm showed relatively higher R2 and appropriate maximum uptake (qm) than other isotherm equation although linear Dubinin-Radushkevich obtained highest R2. 3-parameter isotherm model demonstrated more reasonable and accuracy results than 2-parmeter isotherm in both non-linear and linear due to the addition of one parameter. The linearization for all of isotherm equation did not increase the applicability of adsorption models when error experiment data was included.

Least absolute deviation estimator based consistent model selection in regression

  • Shende, K.S.;Kashid, D.N.
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.273-293
    • /
    • 2019
  • We consider the problem of model selection in multiple linear regression with outliers and non-normal error distributions. In this article, the robust model selection criterion is proposed based on the robust estimation method with the least absolute deviation (LAD). The proposed criterion is shown to be consistent. We suggest proposed criterion based algorithms that are suitable for a large number of predictors in the model. These algorithms select only relevant predictor variables with probability one for large sample sizes. An exhaustive simulation study shows that the criterion performs well. However, the proposed criterion is applied to a real data set to examine its applicability. The simulation results show the proficiency of algorithms in the presence of outliers, non-normal distribution, and multicollinearity.

Robustness of model averaging methods for the violation of standard linear regression assumptions

  • Lee, Yongsu;Song, Juwon
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.189-204
    • /
    • 2021
  • In a regression analysis, a single best model is usually selected among several candidate models. However, it is often useful to combine several candidate models to achieve better performance, especially, in the prediction viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been suggested from the perspective of averaging candidate models. When the candidate models include a true model, it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA approaches have different properties, it is difficult to determine which method is more appropriate under other situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging methods as well as a single best model in the linear regression analysis when standard linear regression assumptions are violated. Simulations were conducted to compare model averaging methods with the linear regression when data include outliers and data do not include them. We also compared them when data include errors from a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better performance than BMA or standard linear regression analysis (including the stepwise selection method) in the sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.

사업체조사에서의 무응답 편향보정 추정에 관한 연구 (A study on non-response bias adjusted estimation in business survey)

  • 정희영;신기일
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.11-23
    • /
    • 2020
  • 표본조사는 비용과 시간을 절약하면서도 주어진 정확성을 만족하는 통계를 얻을 수 있다. 그러나 최근에는 다수의 무응답 발생으로 인해 조사의 정확성이 크게 떨어지고 있다. 무응답은 다양한 이유로 발생하고 있으나 무응답이 관심변수와 함수 관계가 있는 경우에는 이 정보를 이용하여 무응답을 적절히 처리해야 추정의 정확성이 유지될 수 있다. 최근 Chung과 Shin (2017, 2019), Min과 Shin (2018)은 응답률이 관심변수의 지수 또는 선형함수이고 초모집단모형의 오차가 정규분포를 따를 때 무응답으로 인해 발생한 편향을 제거함으로써 추정의 정확성이 향상되는 것을 확인하였다. 이에 본 연구에서는 사업체조사에서 초모집단모형의 오차가 감마분포 또는 로그-정규분포를 따르는 경우에서의 무응답 편향보정 추정량을 제안하였다. 또한 모의실험을 통하여 제안된 추정량의 우수성을 확인하였다.

Non-linear modelling to describe lactation curve in Gir crossbred cows

  • Bangar, Yogesh C.;Verma, Med Ram
    • Journal of Animal Science and Technology
    • /
    • 제59권2호
    • /
    • pp.3.1-3.7
    • /
    • 2017
  • Background: The modelling of lactation curve provides guidelines in formulating farm managerial practices in dairy cows. The aim of the present study was to determine the suitable non-linear model which most accurately fitted to lactation curves of five lactations in 134 Gir crossbred cows reared in Research-CumDevelopment Project (RCDP) on Cattle farm, MPKV (Maharashtra). Four models viz. gamma-type function, quadratic model, mixed log function and Wilmink model were fitted to each lactation separately and then compared on the basis of goodness of fit measures viz. adjusted $R^2$, root mean square error (RMSE), Akaike's Informaion Criteria (AIC) and Bayesian Information Criteria (BIC). Results: In general, highest milk yield was observed in fourth lactation whereas it was lowest in first lactation. Among the models investigated, mixed log function and gamma-type function provided best fit of the lactation curve of first and remaining lactations, respectively. Quadratic model gave least fit to lactation curve in almost all lactations. Peak yield was observed as highest and lowest in fourth and first lactation, respectively. Further, first lactation showed highest persistency but relatively higher time to achieve peak yield than other lactations. Conclusion: Lactation curve modelling using gamma-type function may be helpful to setting the management strategies at farm level, however, modelling must be optimized regularly before implementing them to enhance productivity in Gir crossbred cows.

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • 컴퓨터교육학회논문지
    • /
    • 제6권3호
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선 (Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation)

  • 이우석;김상욱;정은성;이길성
    • 한국수자원학회논문집
    • /
    • 제41권8호
    • /
    • pp.807-823
    • /
    • 2008
  • 수위-유량 관계 곡선을 나타내는 곡선식에 포함되어 있는 매개변수의 추정을 위해 많이 사용되는 로그선형 회귀분석은 잔차의 비등분산성(heteroscedasticity)을 고려하지 못하므로 본 연구에서는 의사우도추정법(pseudolikelihood estimation, P-LE)에 의해 분산함수를 추정하고 이와 함께 회귀계수를 추정할 수 있는 방법을 제시하였다. 이 과정에서 제시된 회귀잔차를 최소화하기 위하여 SA(simulated annealing)이라는 전역 최적화 알고리즘을 적용하였다. 또한 수위-유량 관계 곡선은 단면 등의 영향으로 인해 구간에 따라 각각 다르게 구축되어져야 하므로 이를 보다 객관적으로 판단하고 분리 위치를 추정하기 위하여 Heaviside 함수를 의사우도함수에 포함시켜 결과를 추정하도록 하였으며, 2개의 구간을 가지는 유량자료를 이용하여 제시된 방법의 합리성을 통계적으로 실험하였다. 이와 같이 통계적 실험을 통해 제시된 방법들이 기존 방법과 비교하여 가질 수 있는 장점을 파악하였으며, 제시된 방법들을 금강유역 5개 지점에서 대해 수행하여 효율성을 검증하였다.

내부에너지를 최대로 하는 활 구조의 최적화 (Shape optimization of a bow for maximizing internal-energy)

  • 문명조;이현정
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.222-227
    • /
    • 2016
  • In this paper, the optimized design for bow structure was investigated by using EDISON software. Considering the mechanism of the bow, non-linear FEM analysis was essential. The factors of the design are height, width, number of holes and taper value. High performance of the internal energy and lowest mass were main issues. The limit of the von-mises stress was yield strength for the material. Material was chosen by considering typical bow material, Aluminum. Using Taguchi method($L_9$), 9 models were selected and contribution rate was calculated for each factors. Following the contribution rate, 3 factors were fixed and optimized model was predicted. After making optimized model for FEM analysis, the value of internal-energy, mass for FEM model were compared with predicted value, calculated the percentage error and figure out the reliability of Taguchi method.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • 제8권4호
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.