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Abstract

We describe a new method for removing non-linear phased array antenna aberration called "squint” problem. To

develop a compensation scheme, theoretical antenna and artificial neural networks were used.

The purpose of using the artificial neural nerworks is to develop an antenna system model that represents the steering function of

an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the

antenna or antenna model will correct the "squint"problem. Combining the actual steering function and the inverse model

contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired

position instead of squinting.

The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna

performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

Index Terms--- Squint problem, Phased array, artificial neural network, rms error, beam steering characteristics, adaptive

systems

1. Introduction

Many phased array antennas suffer from the so called
"squint"aberration, which is a form of aberration that
causes the actual pointing angle of the antenna to be
significantly different from the desired angle. In other
words, the position of a target can not be measured
accurately by an antenna with this aberration. In general
this effect is evidenced by a discrepancy between actual
azimuth and elevations and the desired azimuth and
elevations. Figure 2 shows the example of squint. This
problem can be caused by manufacturing tolerance as
well as fundamental electrical characteristics. Most of
researchers tried to demonstrate the squint free beam
based on an optical equipment controlling phased array
antenna[8][10]{15][16][17][18]. The squint free receiver
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steering in 70° azimuth over the full availablefrequency
range was demonstrated by Michael Y. Frankel and
Ronald D. Esman from Naval Research Lab [15]. David
D. Curtis and Lisa M. Sharpe who discussed elimination
of phased array beam squint are demonstrated at S-band
by means of a single mode fiber-optic beamforming
network [25]. J. L. Cruz and his research group
demonstrated elimination of the squint error between
30° in the frequency range 2-6 GHZ by using a chirped
fiber grating beamformer {10]. The problem of using the
hardware as fiber-optic system is that the manufacturing
cost and the characteristicv error which is generated with
use of each hardware could be increased.

The goal of this research is to apply an artificial
neural network, software, to produce squint free phased
array antenna system where the basic antenna suffers
from aberration.

An artificial neural network is an information
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processing system that has certain performance
characteristics in common with a biological neural
network [1]. The artificial neural network is often used
in conjunction with large scaled and complex system
having nonlinearity [2]. Antenna systems are complex
system whose performance can be improved by using
the artificial neural network. For example the adaptive
beam forming function in phased array antennas using
the artificial neural networks has been demonstrated in
several papers [4][5][7]. Southhall and his research
group exhibited direction finding using neural network
beamformer in a phased array antenna [4]. A neural
network based on adaptive beamformer for two
dimensional array antenna was also demonstrated by
Zooghby, Christodoulou, and Geogiopoulos [7].

The antenna system we chose to analyze uses a phase
shifting network to position the beam in azimuth and
frequency changes to steer the antenna in elevation.
This system produces a response curve that is nonlinear
in both azimuth and elevation. See Figure 2.

The inverse model is implemented using a
combination of the guadratic equation and the artificial
neural networks. The resuits are evaluated using rms
error. The rms errors are measured for all configurations
tested.

An artificial neural network provides a method of
producing a nonlinear system capable of correcting the
antenna performance. The network trained to
compensate for the nonlinear behavior of the modeled

antenna is also discussed in this research.

2. Background

2.1.  Artificial neural networks

An artificial neural network is "an information
processing system that has certain performance
characteristics in common with biological neural
networks and parallel distributed processor that has a

natural propensity  for  storing  experimental

knowledge"{1]. This is a mathematical model of human
cognition or neural biology.

Constituent elements of the artificial neural networks
are neurons, connection links, and weight and bias and
activation function.

In mathematical terms, we describe a neuron k by
writing the following equation:

p
up = j2= . Wi j

Ve :q’(“k )

A neuron is divided into two separate parts. One is
summing junction that sums all input signals, the other
is activation function that limits the amplitude of the
output of a neuron.

The purpose that uses activation function is to
"squashes the amplitude of the output of a neurons"[2].
Typically, the normalized amplitude range of the output
is the interval [0,1] or alternatively [-1,1].

We may identify several types of activation function.

2.2. Backpropagation neural networks

Multiple layer feedforward networks that are an
important class of neural networks are described by
backpropagation. The backpropagation, that has
multiple layers networks and non-linear differentiable
activation function, was created by inducing the
Widrow-Hoff learning rule. This algorithm is known as
mutilayer perceptrons that train them in supervised
manner. Input vector and the corresponding target
vectors are used to train a network until it can
approximate a function.

Figure 1 shows architecture of the backpropagation
neural networks. Input vectors (x1, x2, x3, . . . xn) are
connected to neurons of hidden layer with weights (v11,
v12,. . . vnn). Hidden layer (nl, n2,. . . nn)is
connected to output layer with another weights (wl,w2,

wn). Results of output layer are compared to
target pattern. After finishing comparison, delta vectors

are backpropagated
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Figure 1. Backpropagation architecture

3. Design

3.1. Antenna performance characterization

The antenna system we chose to inquire uses a phase
shifting network to position the beam in azimuth and
frequency changes to steer the antenna in elevation.

Actual performance data are as follows;

Actual performance elevation

40 41 42 43 44 45 46 47 48
57 60 63 65 66 67 66 65 63
71 75 78 82 83 82 81 79 76
86 93 98 102 103 102 101 97 92
95 104 107 112 113 112 109 106 100

Actual performance azimuth
[~700 —530 —350 —190 0 190 350 530 700]

The system described by the above data is non-linear.

The system produces a family of response curves in
azimuth and elevation. Figure 2 shows the response
curves as a function of elevation. In Figure 2, the circles
represent the measured angle selected response of the
antenna to angle commands that fall on the dotted lines.
Solid curves are based on a least square approximation
to the measured data. In other word, they are an
optimized curve based on the measured actual data. The
response of the antenna at zero azimuth angles is

assumed to be the desired elevation. However, all other

azimuth positions produce elevation angles that are in
error. The purpose of this research is to develop a
method to produce an antenna response that falls on
straight lines that have the desired elevation angles that
i1s when a particular azimuth and elevation are set the
antenna actually points to these coordinates. First of all,
it is necessary to determine the estimated non-linear
antenna steering characteristics in terms of a closed
form of equation. The curves in Figure 2 are produced

by such an equation.
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Figure 2. Antenna model function compared with the
original measured data set

3.2. Determination of antenna steering
characteristics

We used a multivariate interpolation approach to
determine the correct fit based on the MATLAB polyfit
function and polyval function. Let actual elevation and

azimuthbe E , A.

40 41 42 43 44 45 46 47 48
57 60 63 65 66 67 66 65 63
E=|71 75 78 82 83 8 8L 79 76
86 93 98 102 103 102 101 97 92
95 104 107 112 113 112 109 106 100

A = [-700 -530 —350 ~190 0 190 350 530 700]

For example for the first row of elevation data we

want to fit this polynomial equation 1 to following set of
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A)_(-700 -530 -350 -190 0 190 350 530 700
E}]"| 40 41 42 43 44 45 46 47 48

E()=aA’ +bA + ¢ 1)

where 1 is the index of row in actual measured

elevation

E(AE)= PE* + QE+C )

A

E

Using MATLAB polyfit function and polyval
function, we get follow equation1.

In equation 1, a, b, and c are coefficients of each
polynomials. If we apply this procedure to each row of
data, we get five different equation 2 through equation 6
for each elevation.

E()=568x10°A + 44 )
E(2)=-128x10°A% + 445 x 107 A + 662 (3)
E(3) = —177x 10°A® + 3.96 X107 A + 82.32 (4)
E(4) = —286x 107 A* +2.83x107° A + 10302 (5)
E(5)=-3.07x10°A® + 283107 A + 11278 (6)

Equations 2,3,4,5,6 are best-fit equations that include

actual elevation of each row in E based on azimuth.
Now, These equations will be developed with one

non

E=[44 66 83 103 113]

linear equation based on desired elevation. Let E be

desired elevation, when azimuth is zero.

Equation 7 can be implemented by using desired
elevation E and each coefficient of equation 2, 3, 4, 5,
and 6. This equation is as follows;

P is an equation that is computed by using
coefficients

of second order in equation 2,3,4,5,6 and desired
elevation E. Q is an equation that is computed by using
coefficients of first order in equation 2,3,4,5,6 and
desired elevation E. C is an equation that is computed
by using coefficients of zero order and desired elevation
E. This technique can be solved by MATLAB polyfit

function.

Consequently, we have a non linear antenna steering
characteristic equation 8.

where E,A ; are the commanded elevation
and

E(A,E)= al + a2E + a3A + a4EA + a5E*

+a6A’> + aTE*A + a8EA® + a9E*A” (8)

azimuth in Mils. And are the actual angles in Mils
to which the antenna points. The first problem is to
determine if this general form can be made to fit the
data. Each coefficients are given in Table 1.

In addition to, the antenna model equation 8 is

represented by matrix form.

d @ &)1
HAB=(1 A £|B & a1|E 9)
& B8 O|F
Coefficient Value
al 1.0918330571718166
a2 0.96973254045285
a3 0.7833329970133X10-2
a4 -0.5757496594X10-4
as 0.17057944026X10-3
ab 0.26321333949472X10-4
a7 0.14427681X10-6
a8 -0.666238479155X10-6
a9 0.1398714352X10-8

Table 1.Coefficients of antenna model equation

This equation was then tested against the known data
by computing values for the output of the antenna
model equation and comparing them with the known
points. An interpolated curve was generated to provide
estimates for the response of the antenna in between the
known data points. The rms error was computed for the

aggregate of all of the known points,

oo 1562

where E was the known data point and E was the
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estimated value from the model equation. The rms error
was 0.54 Mils(0.030 Degrees). A plot of the response
of the model equation and the data points is shown in
Figure 3. Symbol x is the estimated value from antenna
model equation and symbol o is the known data point.
With this model of antennaperformance we can
proceed to develop a compensation system which when
applied to the antenna steering commands will allow us
to get the desired result in pointing angle. First the
uncompensated antenna model shown in the following

figure was determined.

Antenna
F. . . >

Madel

E jesired * Edesired

Now we will prefilter an input antenna (Inverse
antenna) so that the total system inverse antenna
responds correctly. To do this, the following will be
implemented.

El

estimated

E,

sired

—» Inverse [ Antenna desired

A b PR PN )

E tesired = Edesired
This structure is the design concept of this research.
Next we will discuss the methods used to form the

inverse antenna function and then the results of using
the method.
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Figure 3. Estimated data point from antenna model (symbol

x)

3.3. Inverse antenna model using artificial

neural networks

First, mathematical method using quadratic theory
was used to develop inverse equation model.

This mathematical way is the most basic method to
solve inverse function. If the way using quadratic theory
does not give us good solution, we try to find a new
method to have good solution.

Straight forward
Antenna model

Crevation Inverse €' Elevation
i
Avinuth antenna mode! — Azimuth

L ] | H
- ArteTTTer

networks

Compare

As a result, the antenna elevation calculated from the
antenna model equation results that deviated from the
elevations measured by the actual antenna. Rms error is
about 4.5Mils. This is a big error between calculated
elevation and measured elevation.

Consequently, it is necessary for another method to
compensate inverse model equation using quadratic
theory. The use of artificial neural networks provides a
more direct method for forming the inverse for this
equation.

The purpose of this section is to define an inverse
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antenna model of an antenna whose performance is
described by an Equation 8, using the artificial neural
network. The artificial neural network can give a more
accurate method for implementing the inverse model.
The most logical approach seems to be to assume a form
for the inverse that is of the same form as the forward
equation and then determine the best fit coefficients that
will provide the desired output. In this case the desired
output is the same as the input. The network suggested
is shown in Figure 4. We used a linear network and
pre-processed the inputs into the form of the model
equation (e.g. A, E, AE, A’ B2 AEY, A’E, and A’EY.

Et. €c

ANT =1 Actual Elevation

Figure 4. Architecture used for the determination the

inverse equation

In Figure 4, coefficients of the inverse model are
weights and bias of the artificial neural networks, Note
the artificial neural network has only one neuron and
linear activation function. This activation function is
F(x) = x. we also know E'is the desired elevation from
Figure 4. Figure 5 shows a block diagram of Figure 4
including the training path. After training the neural
networks, input elevation and output elevation were

tested and compared.

Elevation Inverse £ Elevation
vatiar vati
‘Azimuth antenna model — Azinuth

L L errmremoston—

networks

Straight forward
Antenna mogel

Compare

Figure 5. Block diagram of figure 4

With this type of pre-processing the nature
of the non-linearity was preserved, while allowing the
flexibility of an optimization scheme such as back
propagation to determine the exact coefficients. The
neurons used in this first method were linear, as we
have already incorporated the non-linearities into the
preprocessing of the input data. The output of the
network was then passed through the antenna equation,
and this output was used to determine the error, (the
difference between the desired position of the beam and
the actual position.) The error was then used in the
conventional manner to perform learning. The learning
process for our neural network follows the delta rule
that is briefly described below.

The error term e is computed by;

e=FEt—-Ec where Et. Target elevation

Ec: Computed

Weight changes are computed by;

where f(x) = I for linear cases
Aw, = aef '(y_in)x,

Bias changes are calculated by;

Ab = oef '(y_in)
Forward propagation (output computation) is;

y_in =b+§n:xiwi

i=1
Ec=E(A, f(y_in))
Algorithm for weight change (learning) is
w(new) =w(old)+ 4w,
b(new) = b(old) + Ab
The results of this type of approach provide a set of
coefficients that give an adjusted coordinate that when

applied to the antenna steering system position the

antenna correctly

3.4. Training, test of the artificial neural

networks and experimental results
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Training of the inverse antenna modelwas

implemented using MATLAB and the back-propagation

algorithm. The points chosen were those given in the

It may be possible to reduce the number of coefficients

and get

E(AE)= al + a2E + a3A + a4EA + aSE*

performance data. The neural network was trained +ab6A’ + aTETA + a8EA° + a9E7A (8)

successfully and the rms error was computed from all of maintains squint compensation.

the training points. The error was 0.28 Mils (0.0157

Coefficients Value
degrees). Figure 6 shows the result of the trained al -1.1236547
antenna model combined with the training data set. The 0 -8.66676609X 10-3
"O"symbol show the original measured antenna dat
Syrmbol show the ongl Sur aa a3 9.4962465X 10-1
points and the "X" symbol show the results from trained
a4 2.966443X10-2
neural networks.
as 6.4287039X10-3
a6 5.7103463X10-1
a7 1.6140672X10-1
120 T r
. a8 -2.6462807X10-1
100~ w a9 9.41091X10-1
®-
;o “ . ‘ - -
uw . Table 2. Coefficients of the inverse antenna model equation
0. - ¢ " ) | After training, it is necessary to test whether the
performance of the trained neural networks is as desired
* or not. Data that are not in the training set need to be
used for testing. The testing set has data points spacing
300 Al 4mM =200 a 0 u'\o A A . . ..
Ackman the whole measurement space but not including training
data points

Figure 6. Results of training the inverse network. Data

) Testing -560 -420 -280 -140 0 140 280 420 700
plotted as x's and circles represent the original antenna data

azimuth
points RMS error is0.28 Mils, 0.016 deg 40 40 40 40 40 40 40 40 40 40
As mentioned above, the weights and bias of the 50 50 50 50 50 50 50 50 50 50
trained neural network become the coefficients of the 60 60 60 60 60 60 60 60 60 60

Testing | 70 70 70 70 70 70 70 70 70 70
elevation 8 80 8 8 8 80 8) 80 80 80
90 9% 9% 90 90 9% 9% 90 9% 90
sufficient number of coefficients necessary to program 100 100 100 100 100 100 100 100 100 100

inverse antenna model. The linear artificial neural

networks, which have one neuron, provide a small but

the control algorithm into a digital computer associated 110_110 110 110 110 110 110 110 110 110
Table 3. Test set

with the antenna. Therefore, the weights and the bias

have very important meaning in the neural networks. . ) L
ty ) p 8 o Table 3 shows test set which have data point with in

After training the neural network, the coefficients of . . .
) ) ) whole measured space. The result is reliable. Figure 7
the inverse antenna model are determined from weights _ .
) i o and figure 8 show the response of testing neural

and bias. Table 2 shows the nine coefficients of the
) ) network and rms error mesh plot.
inverse antenna model equation. The removal of squint

) ) ) ) Table 3 shows test set which have data point with in
of the antenna can be achieved using nine coefficients.

whole measured space. The result is reliable. Figure 7
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and figure 8 show the response of testing neural
network and rms error mesh plot.
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Figure 7response of testing neural network

Figure 8 Rms error mesh

6. Conclusion

The artificial neural network designed, trained and
tested in this research successfully removed squint from
the antenna steering characteristics.

The results of training the artificial neural networks
described in this research showed that the goal of this

research, i.e. a squint free compensated antenna model
of a phased array antenna system using artificial neural
networks, has been demonstrated. With calibration of
the phased array antenna system, it becomes the basis
for adaptive beam forming using an over arching
artificial neural network. If a radar can point to the
location of a target accurately, a receiver can detect the
target correctly. Use of the backpropagation neural
network for calibrating phased array antenna can
decrease antenna manufacturing and maintenance costs
by reducing complexity.

Further works is needed to develop an antenna robust
model using random number. This would allow all
kinds of different antenna models having slightly
different characteristics to be controlled by a robust
antenna model.
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