• 제목/요약/키워드: Non-linear Optimization

검색결과 341건 처리시간 0.029초

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

The Use of Particle Swarm Optimization for Order Allocation Under Multiple Capacitated Sourcing and Quantity Discounts

  • Ting, Ching-Jung;Tsai, Chi-Yang;Yeh, Li-Wen
    • Industrial Engineering and Management Systems
    • /
    • 제6권2호
    • /
    • pp.136-145
    • /
    • 2007
  • The selection of suppliers and the determination of order quantities to be placed with those suppliers are important decisions in a supply chain. In this research, a non-linear mixed integer programming model is presented to select suppliers and determine the order quantities. The model considers the purchasing cost which takes into account quantity discount, the cost of transportation, the fixed cost for establishing suppliers, the cost for holding inventory, and the cost of receiving poor quality parts. The capacity constraints for suppliers, quality and lead-time requirements for the parts are also taken into account in the model. Since the purchasing cost, which is a decreasing step function of order quantities, introduces discontinuities to the non-linear objective function, it is not easy to employ traditional optimization methods. Thus, a heuristic algorithm, called particle swarm optimization (PSO), is used to find the (near) optimal solution. However, PSO usually generates initial solutions randomly. To improve the PSO solution quality, a heuristic procedure is proposed to find an initial solution based on the average unit cost including transportation, purchasing, inventory, and poor quality part cost. The results show that PSO with the proposed initial solution heuristic provides better solutions than those with PSO algorithm only.

볼록최적화에 의거한 구조계와 제어계의 동시최적화 - 근사적 어프로치 - (Simultaneous Optimization of Structure and Control Systems Based on Convex Optimization - An approximate Approach -)

  • 손회수
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1353-1362
    • /
    • 2003
  • This paper considers a simultaneous optimization problem of structure and control systems. The problem is generally formulated as a non-convex optimization problem for the design parameters of mechanical structure and controller. Therefore, it is not easy to obtain the global solutions for practical problems. In this paper, we parameterize all design parameters of the mechanical structure such that the parameters work in the control system as decentralized static output feedback gains. Using this parameterization, we have formulated a simultaneous optimization problem in which the design specification is defined by the Η$_2$and Η$\_$$\infty$/ norms of the closed loop transfer function. So as to lead to a convex problem we approximate the nonlinear terms of design parameters to the linear terms. Then, we propose a convex optimization method that is based on linear matrix inequality (LMI). Using this method, we can surely obtain suboptimal solution for the design specification. A numerical example is given to illustrate the effectiveness of the proposed method.

비선형 연료 제약 및 유지보수 비용을 고려한 Mixed Integer Linear Programming 기반 발전기 주간 운용계획 최적화 (A Mixed Integer Linear Programming Approach for the Profit Based Unit Commitment Problem under Non-Linear Fuel Consumption Constraint and Maintenance Cost)

  • 송상화;이경식
    • 경영과학
    • /
    • 제25권1호
    • /
    • pp.43-53
    • /
    • 2008
  • This paper considers a profit-based unit commitment problem with fuel consumption constraint and maintenance cost, which is one of the key decision problems in electricity industry. The nature of non-linearity inherent in the constraints and objective functions makes the problem intractable which have led many researches to focus on Lagrangian based heuristics. To solve the problem more effectively, we propose mixed integer programming based solution algorithm linearizing the complex non-linear constraints and objectives functions. The computational experiments using the real-world operation data taken from a domestic electricity power generator show that the proposed algorithm solves the given problem effectively.

변수 불확실성과 제어기 악성을 가지는 이산 특이시스템의 강인 안정화 (Robust Stabilization of Discrete Singular Systems with Parameter Uncertainty and Controller Fragility)

  • 김종해
    • 전자공학회논문지SC
    • /
    • 제45권5호
    • /
    • pp.1-7
    • /
    • 2008
  • 본 논문에서는 변수 불확실성을 가지는 이산시간 특이시스템과 곱셈형 섭동의 약성(fragility)을 가지는 제어기에 대한 강인 안정화 기법과 강인 비약성(non-fragile) 제어기 설계방법을 제시한다. 강인 안정화를 만족하는 비약성 제어기가 존재할 조건과 제어기 설계방법 및 제어기의 비약성 척도를 볼록최적화(convex optimization)가 가능한 선형행렬부등식 접근방법을 이용하여 제안한다. 최대의 비약성 척도를 얻기 위하여 구한 제어기 충분조건은 모든 변수의 견지에서 선형행렬부등식으로 변형한다. 따라서, 제안한 강인 비약성 이산 제어기는 특이시스템의 변수 불확실성과 제어기의 약성에도 불구하고 안정성을 보장한다 마지막으로, 수치예제를 통하여 제안한 알고리듬의 타당성을 확인한다.

A TRUST REGION METHOD FOR SOLVING THE DECENTRALIZED STATIC OUTPUT FEEDBACK DESIGN PROBLEM

  • MOSTAFA EL-SAYED M.E.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.1-23
    • /
    • 2005
  • The decentralized static output feedback design problem is considered. A constrained trust region method is developed that solves this optimal control problem when a complete set of state variables is not available. The considered problem is interpreted as a non-linear (non-convex) constrained matrix optimization problem. Then, a decentralized constrained trust region method is developed for this problem class exploiting the diagonal structure of the problem and using inexact computations. Finally, numerical results are given for the proposed method.

부상용 마그네트의 최적 설계에 관한 연구 (A study on the optimization of electromagnet for levitation)

  • 임달호;장석명;이주;이재봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 1991
  • An electromagnet is one of the important devices in magnetic levitation system. Its weight takes large part in the total weight of a vehicle. That is the reason why it is important to design the electromagnet optimally to maximize the attraction force with constant volume. This study presents the optimum value of the design variables which can produce the maximal attraction force under constant magnet volume. For this, non-linear programming in optimization technique is used. And to confirm reliability of the results, the optimally designed electromagnet is analyzed by FEM. The attraction force of the optimally designed electromagnet is increased maximally 72% compared with that of the basic model. And the results obtained by non-linear programming has 30% error compared with that of FEM.

  • PDF

하천 수질관리 시스템에서 최적화를 위한 유전알고리즘의 개발 (Development of a Genetic Algorithm for the optimization in River Water Quality Management System)

  • 성기석;조재현
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2001년도 추계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2001
  • Finding the optimal solution in the river water quality management system is very hard with the non-linearity of the water quality model. Many suggested methods for that using the linear programming, non-linear programming and dynamic programming, are failed to give an optimal solution of sufficient accuracy and satisfaction. We studied a method to find a solution optimizing the river water quality management in the aspect of the efficiency and the cost of the waste water treatment facilities satisfying the water Quality goals. In the suggested method, we use the QUAL2E water quality model and the genetic algorithm. A brief result of the project to optimize the water quality management in the Youngsan river is presented.

  • PDF

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A.;Talatahari, S.;Hadidi, A.
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.431-451
    • /
    • 2013
  • The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

내부에너지를 최대로 하는 활 구조의 최적화 (Shape optimization of a bow for maximizing internal-energy)

  • 문명조;이현정
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.222-227
    • /
    • 2016
  • In this paper, the optimized design for bow structure was investigated by using EDISON software. Considering the mechanism of the bow, non-linear FEM analysis was essential. The factors of the design are height, width, number of holes and taper value. High performance of the internal energy and lowest mass were main issues. The limit of the von-mises stress was yield strength for the material. Material was chosen by considering typical bow material, Aluminum. Using Taguchi method($L_9$), 9 models were selected and contribution rate was calculated for each factors. Following the contribution rate, 3 factors were fixed and optimized model was predicted. After making optimized model for FEM analysis, the value of internal-energy, mass for FEM model were compared with predicted value, calculated the percentage error and figure out the reliability of Taguchi method.

  • PDF