DOI QR코드

DOI QR Code

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A. (Department of Civil Engineering, University of Tabriz) ;
  • Talatahari, S. (Marand Faculty of Engineering, University of Tabriz) ;
  • Hadidi, A. (Department of Civil Engineering, University of Tabriz)
  • Received : 2012.06.21
  • Accepted : 2013.04.21
  • Published : 2013.05.25

Abstract

The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

Keywords

References

  1. Afshar, M.H. and Motaei, I. (2011), "Constrained big bang-big crunch algorithm for optimal solution of large scale reservoir operation problem", Int. J. Optim. Civil. Eng., 1(2), 357-375.
  2. Almusallam, T.H. (1995), "Effect of connection flexibility on the optimum design of steel frames", Proceedings of International Conference of Developments in Computational Techniques for Civil Engineering, Edinburgh, UK, August.
  3. Alsalloum, Y.A. and Almusallam, T.H. (1995), "Optimality and safety of rigidly-jointed and flexibly-jointed steel frames", J. Constr. Steel Res., 35(2), 189-215. https://doi.org/10.1016/0143-974X(94)00043-H
  4. American Institute of Steel Construction (AISC), (1995), Manual of Steel Construction-Load and Resistance Factor Design, Chicago, IL.
  5. Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Wiley & Sons Inc., New York.
  6. Davison, J.H. and Adams, P.F. (1974), "Stability of braced and unbraced frames", J. Struct. Div. ASCE, 100(2), 319-334.
  7. Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5),755-768. https://doi.org/10.1007/s00158-010-0533-7
  8. Erol, O.K. and Eksin, I. (2006), "A new optimization method: Big Bang-Big Crunch", Adv. Eng. Software, 37(2), 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
  9. Faella, C., Piluso, V. and Rizzano, G. (2000), Structural steel semi-rigid connections, CRC press, Boca Raton.
  10. Frye, M.J. and Morris, G.A. (1975), "Analysis of frames with flexible connected steel frames", Can. J. Civ. Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
  11. Gorgun, H. and Yilmaz, S. (2012) "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., Int. J., 44(4), 539-569. https://doi.org/10.12989/sem.2012.44.4.539
  12. Hasancebi O., Carbas S., Dogan E., Erdal F., Saka M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006
  13. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  14. Kameshki, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
  15. Kaveh, A. and Talatahari, S. (2009a), "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
  16. Kaveh, A. and Talatahari, S. (2009b), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
  17. Kaveh, A. and Talatahari, S. (2010a), "Optimal design of skeletal structures via the charged system search algorithm", Struct. Multidisc. Optim., 41(6), 893-911. https://doi.org/10.1007/s00158-009-0462-5
  18. Kaveh, A. and Talatahari, S. (2010b), "A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures", Asian J. Civil Eng., 11(1), 103-122.
  19. Kaveh, A. and Talatahari, S. (2010c), "Optimal design of schwedler and ribbed domes via hybrid Big Bang-Big Crunch alghoritm", J. Constr. Steel Res., 66(3), 412-419. https://doi.org/10.1016/j.jcsr.2009.10.013
  20. Kishi, N., Chen, W.F. and Goto, Y. (1997), "Effective length factor of columns in semi-rigid and unbraced frames", J. Struct. Eng. ASCE, 123(3), 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
  21. Li, T.Q., Nethercot, D.A. and Tizani, W.M.K. (1997), "Integrated design system for semi-rigidly connected steel frames", J. Adv. Struct. Eng., 1(1), 47-61. https://doi.org/10.1177/136943329700100106
  22. Lui, E.M. and Chen, W.F. (1986), "Analysis and behavior of flexibly-jointed frames", Eng. Struct., 8(2), 107-118. https://doi.org/10.1016/0141-0296(86)90026-X
  23. Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  24. Simoes, L.M.C. (1996), "Optimization of frames with semi-rigid connections", Comput. Struct., 60(4), 531-539. https://doi.org/10.1016/0045-7949(95)00427-0
  25. Tang, H., Zhou, J., Xue, S. and Xie, L. (2010), "Big bang-big crunch optimization for parameter estimation in structural systems", Mech. Syst. Signal. Proc., 24(8), 2888-2897. https://doi.org/10.1016/j.ymssp.2010.03.012
  26. Valipour, H.R., and Bradford, M.A. (2013), "Nonlinear P-$\Delta$ analysis of steel frames with semi-rigid connections", Steel Compos. Struct., Int. J., 14(1), 1-20. https://doi.org/10.12989/scs.2013.14.1.001
  27. Xu, L. and Grierson, D.E. (1993), "Computer automated design of semi-rigid steel frameworks", J. Struct. Eng. ASCE, 119(6), 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)

Cited by

  1. An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions vol.55, pp.5, 2015, https://doi.org/10.12989/sem.2015.55.5.979
  2. On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.761
  3. Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.323
  4. Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
  5. A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
  6. Seismic response of 3D steel buildings with hybrid connections: PRC and FRC vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.113
  7. Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations vol.11, pp.4, 2016, https://doi.org/10.12989/eas.2016.11.4.701
  8. Optimum design of steel space frames with composite beams using genetic algorithm vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.503
  9. Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
  10. Optimum design of braced steel frames via teaching learning based optimization vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.733
  11. Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.467
  12. Optimum design of steel space frames including soil-structure interaction vol.54, pp.1, 2016, https://doi.org/10.1007/s00158-016-1401-x
  13. Seismic response and energy dissipation of 3D complex steel buildings considering the influence of interior semi-rigid connections: low- medium- and high-rise vol.16, pp.11, 2018, https://doi.org/10.1007/s10518-018-0405-x
  14. Design of steel frames by an enhanced moth-flame optimization algorithm vol.24, pp.1, 2013, https://doi.org/10.12989/scs.2017.24.1.129
  15. Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2013, https://doi.org/10.12989/sem.2017.63.5.607
  16. Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity vol.25, pp.1, 2017, https://doi.org/10.12989/scs.2017.25.1.001
  17. A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2013, https://doi.org/10.12989/sem.2018.66.2.173
  18. Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2013, https://doi.org/10.12989/sem.2019.70.2.221
  19. A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
  20. A new second-order approximation method for optimum design of structures vol.19, pp.1, 2013, https://doi.org/10.1080/14488353.2020.1798039
  21. Comparison of three novel hybrid metaheuristic algorithms for structural optimization problems vol.244, pp.None, 2013, https://doi.org/10.1016/j.compstruc.2020.106395
  22. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795