• Title/Summary/Keyword: Noise Amplification

Search Result 156, Processing Time 0.029 seconds

Finding Optimal Installation Depth of Strong Motion Seismometers for Seismic Observation (지진 관측을 위한 최적 설치심도 조사 방법 연구)

  • Seokho Jeong;Doyoon Lim ;Eui-Hong Hwang;Jae-Kwang Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • We installed temporary strong motion seismometers at the ground surface, 1 m, 2 m, and 9 m at an existing seismic station that houses permanent seismometers installed at 20 m and 100 m, to investigate the influence of installation depth on the recorded ambient and anthropogenic noise level and the characteristics of earthquake signals. Analysis of the ambient noise shows that anthropogenic noise dominates where vibration period T < 1 s at the studied site, whereas wind speed appears to be strongly correlated with the noise level at T > 1 s. Frequency-wavenumber analysis of 2D seismometer array suggests that ambient noise in short periods are predominantly body waves, rather than surface waves. The level of ambient noise was low at 9 m and 20 m, but strong amplification of noise level at T < 0.1 s was observed at the shallow seismometers. Both the active-source test result and the recorded earthquake data demonstrated that the signal level is decreased with the increase of depth. Our result also shows that recorded motions at the ground and 1 m are strongly amplified at 20 Hz (T = 0.05 s), likely due to the resonance of the 3 m thick soil layer. This study demonstrates that analysis of ambient and active-source vibration may help find optimal installation depth of strong motion seismometers. We expect that further research considering various noise environments and geological conditions will be helpful in establishing a guideline for optimal installation of strong motion seismometers.

Implementation of an Integrated Pressure-sensor System Adapted to the Optimum Sensitivity

  • Hong, Sung-Hee;Cho, Chun-Hyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.186-191
    • /
    • 2017
  • An integrated pressure-sensor system was developed using the sensor-conditioning processes, which resulted in the optimum sensitivity of the pressure-sensor through the signal amplification, noise reduction, and level shift. Due to the specified characteristics among the components, such as operation range, the sensor output was generally limited compared to the full scale of the reading when coupled with other parts. Devices fabricated exhibited comparable characteristics with higher pressure sensitivity to that of the pressure sensor without sensor-conditioning process. In this work, the sensor resolution was at least enhanced at least by 25% using the sensor-conditioning processes.

Processing parallel-disk viscometry data in the presence of wall slip

  • Leong, Yee-Kwong;Campbell, Graeme R.;Yeow, Y. Leong;Withers, John W.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This paper describes a two-step Tikhonov regularization procedure for converting the steady shear data generated by parallel-disk viscometers, in the presence of wall slip, into a shear stress-shear rate function and a wall shear stress-slip velocity functions. If the material under test has a yield stress or a critical wall shear stress below which no slip is observed the method will also provide an estimate of these stresses. Amplification of measurement noise is kept under control by the introduction of two separate regularization parameters and Generalized Cross Validation is used to guide the selection of these parameters. The performance of this procedure is demonstrated by applying it to the parallel disk data of an oil-in-water emulsion, of a foam and of a mayonnaise.

CMOS Circuits for Multi-Sensor Interface Custom IC (멀티센서신호 인터페이스용 Custom IC를 위한 CMOS 회로 설계)

  • Jo, Young-Chang;Choi, Pyung;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 1994
  • In this paper, the multi-sensor signal processing IC is designed. It consists of an analog multiplexer for selection of multi-sensor signals, active filters for noise rejection and signal amplification, and a sample and hold circuit for interface with digital signal processing. By implementing these circuits with CMOS transistors, integration, low power dissipation and miniaturization of the total signal processing system have been made possible.

  • PDF

A Development of the Fault Detection System of Wire Rope using Magnetic Flux Leakage Inspection Method and Noise Filter (누설자속 탐상법 및 노이즈 필터를 이용한 와이어로프의 결함진단시스템 개발)

  • Lee, Young Jin;A, Mi Na;Lee, Kwon Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.418-424
    • /
    • 2014
  • A large number of wire rope has been used in various industries such as cranes and elevators. When wire used for a long time, wire defects occur such as disconnection and wear. It leads to an accident and damage to life and property. To prevent this accident, we proposed a wire rope fault detection system in this paper. We constructed the whole system choosing the leakage fault detection method using hall sensors and the method is simple and easy maintenance characteristics. Fault diagnosis and analysis were available through analog filter and amplification process. The amplified signal is transmitted to the computer through the data acquisition system. This signal could be obtained improved results through the digital filter process.

Fundamental requirements for performing electroencephalography

  • Koo, Dae Lim;Kim, Won-Joo;Lee, Sang-Ahm;Kim, Jae Moon;Kim, Juhan;Park, Soochul;Korean Society of Clinical Neurophysiology Education Committee
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • The performance of electroencephalogram (EEG) recordings is affected by electrode type, electronic parameters such as filtering, amplification, signal conversion, data storage; and environmental conditions. However, no single method has been identified for optimal EEG recording quality in all situations. Therefore, we aimed to provide general principles for EEG electrode selection as well as electronic noise reduction, and to present comprehensive information regarding the acquisition of satisfactory EEG signals. The standards provided in this document may be regarded as Korean guidelines for the clinical recording of EEG data. The equipment, types and nomenclature of electrodes, and the details for EEG recording are discussed.

Hardware Implementation for Real-Time Speech Processing with Multiple Microphones

  • Seok, Cheong-Gyu;Choi, Jong-Suk;Kim, Mun-Sang;Park, Gwi-Tea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.215-220
    • /
    • 2005
  • Nowadays, various speech processing systems are being introduced in the fields of robotics. However, real-time processing and high performances are required to properly implement speech processing system for the autonomous robots. Achieving these goals requires advanced hardware techniques including intelligent software algorithms. For example, we need nonlinear amplifier boards which are able to adjust the compression radio (CR) via computer programming. And the necessity for noise reduction, double-buffering on EPLD (Erasable programmable logic device), simultaneous multi-channel AD conversion, distant sound localization will be explained in this paper. These ideas can be used to improve distant and omni-directional speech recognition. This speech processing system, based on embedded Linux system, is supposed to be mounted on the new home service robot, which is being developed at KIST (Korea Institute of Science and Technology)

  • PDF

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF

Design of 900MHz CMOS RF Front-End IC for Digital TV Tuner (디지털 TV 튜너용 900MHz CMOS RF Front-End IC의 설계 및 구현)

  • 김성도;유현규;이상국
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.104-107
    • /
    • 2000
  • We designed and implemented the RFIC(RF front-end IC) for DTV(Digital TV) tuner. The DTV tuner RF front-end consists of low noise IF amplifier fur the amplification of 900 MHz RF signal and down conversion mixer for the RF signal to 44MHz IF conversion. The RFIC is implemented on ETRI 0.8u high resistive (2㎘ -cm) and evaluated by on wafer, packaged chip test. The gain and IIP3 of IF amplifier are 15㏈ and -6.6㏈m respectively. For the down conversion mixer gain and IIP3 are 13㏈ and -6.5㏈m. Operating voltage of the IF amplifier and the down mixer is 5V, current consumption are 13㎃ and 26㎃ respectively.

  • PDF

Driving circuit of magnetoimpedance sensor using Instrumentation amplifier (계측증폭기를 이용한 자기임피던스센서의 구동회로)

  • Song, Jae-Yeon;Kim, Young-Hak;Shin, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.581-584
    • /
    • 2003
  • The phase differences and noise signals are in general serious on output of a instrumentation amplifier for signal conditioning of a sensor driven at high frequency due to a time-varying input signal. In this study, we get the better amplification and S/N ratio using the rectified signal for the input of instrumentation amplifier. This driving circuits were designed and constructed by OrCAD and laboratory PCB process. All of the elements used on the circuit including highly speedy OP-Amp. was SMD type and the MI sensor was fabricated by meander-patterned amorphous ribbon. The output sensitivity of this circuit was $105.3mV/V{\cdot}Oe$. That's why this driving circuit is good at detection of fine magnetic field.

  • PDF