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1. INTRODUCTION 

 
Check valves play a vital role in the operations and 

protection of power plant components and systems. During 
one 10-year period of reporting, more than 5,000 check valve 
failures were recorded by the electric utility industry. A 
number of these failures resulted in damage to other plant 
components. In another words, check valve failures have been 
identified as important contributors to water hammer events, 
over-pressurization of low pressure systems. As with any other 
component, these valves must operate properly and reliably 
when called upon to perform their design function [1,2]. 

Check valves came in the forefront of utility attention in 
1986. That year a number of check valve failures caused 
damages to important nuclear power plant systems at several 
plants. Swing check valves are self-contained, self-actuating 
valves that have no external operator to indicate their internal 
position or movement. There fore, a common practice 
followed widely in the nuclear industry consists of valve 
disassembly and inspection. It is very common in a nuclear 
plant for 10 to 30 valves to be disassembled per outage in 
1980s. This particular preventive maintenance approach raises 
a number of serious questions such as, maintenance-induced 
failures, and prolonged outages. It becomes apparent that the 
introduction of nondestructive evaluation techniques will 
significantly reduce the cost of the preventive maintenance 
program[6,7].  

Agostinelli suggests a diagnosis algorithm of check valve 
using acoustic emission sensor and magnetic flux sensor [3]. 
Yang suggests a diagnosis algorithm of check valve using 
ultra sonic sensor and acoustic emission sensor [5]. These 
three methods have been developed for check valve 
monitoring, namely: acoustic emission, ultrasonic inspection, 
and magnetic flux signature analysis. It have been developed 
as means of providing check valve condition related 
information such as disc position, disc motion, seat leakage, 
etc. The most of their research focus on whether fault or not. 
There has been lack of distinction of which fault occurs and 
how large it is. 

To solve these problems, we have presented a condition 
monitoring method of check valve using neural network. The 
acoustic emission sensor was used to acquire the condition 
signals of check valve in direct injection vessel (DVI) test 
loop. The acquired sensor signal pass through a signal 
conditioning which are consisted of steps; rejection of 
background noise, amplification, analogue to digital 

conversion, extract of feature points. The extracted feature 
points which represent the condition of check valve was 
utilized input values of fault diagnosis algorithms using 
pre-learned neural network. The fault diagnosis algorithm 
proceeds fault detection, fault isolation and fault identification 
within limited ranges. The developed algorithm enables timely 
detection of check valve’s degradation and service aging so 
that maintenance and replacement could be preformed prior to 
loss of the safety function. The overall process has been 
experimented and the results are given to show its 
effectiveness. 

 
2. CHECK VALVE FAILURE MECHANISM  

AND EXPREIMENTAL SETUP 
 
2.1 Check valve failure mechanism  
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Fig. 1. The structure of swing type check valve. 

 

The swing type check valve are consisted of a disc, a disc 
nut, a disc nut pin, a hinge arm, a hinge pin, a seat ring, a cap 
studs etc. The result of survey for nuclear power plant has 
operated over ten years reveals that the most frequently failure 
causes are "Disc/Seat wearing", "Hinge Pin wearing", 
"Foreign object intersection", "Improper Assembly" as shown 
in fig. 2.  

Disk wear means the disk was worn to some flaw, so the 
backward leakage flows are induced through the flaws. When 
the foreign object is inserted, the disk is not fully closed. The 
backward leakage flows through the open section in the check 
valve. The result of experiment was shown that the case of 
"Hinge pin wear", "Improper Assembly" are improper in 
detection algorithm in advance. Therefore, the predictive case, 
"Disc/seat wear", "Foreign Object interface", are experimented. 
Figure 3 shows the picture of artificial failure of check 
valve[9,10]. 
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Fig. 2. A statistical chart of causes of fault.  

 

 
 

Fig. 3. The artificial defects of check valve. 
 

 
Fig. 4. Direct Vessel Injection (DVI) Test loop. 

 

2.2 Experimental Setup  
The test loop was manufactured and experimented to have 

information of the characteristic of signal when representative 
failures occur. Fig. 4 shows the DVI(Direct Vessel Injection) 
test loop. In DVI test loop, a check valve was installed to 
prevent the reverse flow from the high pressurized area 
(primary system) to the low pressurized area. The check valve 
can experience local degradation under operation in a number 
of ways.  

Acoustic Emission (AE) refers to generation of transient 
elastic waves during rapid release of energy from localized 
sources within a material. In this experiment, the R6 AE 
sensor and R15 AE sensor are used for experiment. R6 sensor 
detects the frequency range about 30 to 100KHz. and the R15 
sensor detects the frequency range about 100KHz to 1200KHz. 
The most sensitivity sensor for leakage was R15 AE sensor. 
Finite element analysis method is used for the analysis of 
pressure on check valve. The result shows that the most 
adaptive location of AE sensor on check valve is lower area 
because the pressure more powerful in lower area than upper 
area and the higher pressure means that the more leakages are 
exists. Therefore, the R15 sensor was attached on lower 
location of check valve as shown in figure 5. We use the 
coupling agent for higher sensitivity of AE sensor. Figure 6. 
show the 4 inch check valve(a) and experiment instruments(b). 

 
Fig. 5. The installation of acoustic emission sensor 

 

 
Fig. 6. (a) A 4 inch check valve   (b) Experiment instruments 

 

The check valve monitoring by acoustic emission carried 
out as following check valve operation conditions with 
varying the pressure 3bar, 6bar, 9bar. 

 

* Normal condition 
* Disc Wear Failure: 1mm, 2mm, 3mm. 
* Foreign Object : 0.5mm, 1.0mm, 1.2mm, 1.5mm, 2.0mm, 

2.4mm 
 

3. SIGNAL CONDITIONING 
3.1 Sensor signal processing    

The amplification of AE signals are essential for signal 
processing because the acquired signal level of AE sensor 
ranges from uV to mV. The amplification of signal processed 
between pre-amp and main amp. These AE signals detected 
from the sensors were amplified by a pre-amplifier, which had 
a fixed gain of 40dB. After passing through a band pass filter, 
to remove the electrical and mechanical background noise, the 
signals are amplified by the main amplifier (40dB) 

 
 

Fig. 7. The background noise of signal. 
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Table 1. Signal to noise ratio: Disc wear to Normal 

 

Butterworth Filter Chebyshev Filter 

SNR[dB] P σ2 SNR[dB] P σ2 

12.5656 4.71-5 2.61-6 12.7683 4.54-5 2.40-6

Inverse Chebyshev Filter Elliptic Filter 

SNR[dB] P σ2 SNR[dB] P σ2 

7.4201 5.37-5 9.72-6 6.8033 4.32-5 9.01-6

 

 
Table 2. Signal to noise ratio: Foreign objective to Normal  

 

Butterworth Filter Chebyshev Filter 

SNR[dB] P σ2 SNR[dB] P σ2 

46.1882 0.1086 2.61-6 25.6142 0.1038 2.40-6

Inverse Chebyshev Filter Elliptic Filter 

SNR[dB] P σ2 SNR[dB] P σ2 

40.4677 0.1082 9.72-6 39.2531 0.0759 9.01-6

 

As shown in Figure 7, we can find common background 
noises in every AE sensor data fewer than 25 KHz. The band 
pass filter designed for filtering which band-pass ranges from 
25 KHz to 460 KHz. 

To eliminate background noise various filter were used. (i.e. 
Butterworth filter, Chebyshev Filter, Inverse Chebyshev Filter, 
Elliptic Filter.) Table 1 and Table 2 show the results of signal 
to noise ratio (SNR) from each filter. Form the tables, a 
Butterworth filter is best fitting filter for the elimination of the 
background noise because it has a higher SNR than others.  

The acoustic emission sensor signal was recorded at 1 M 
sample/sec rate. Each data contains approximately 60 seconds 
of data. The overall amplitude level of the signal varies just a 
little during this time that means the signal acquired stably and 
reliably.  

 

3.2 Feature Extraction  
The number of acoustic emission signals in general 

materials reach tens of thousands to hundreds of thousands. It 
is very time-consuming problem that processing the acquired 
AE signal data. So the characteristic points which extracted 
form raw acoustic emission data are used to signal processing 
and the commercial instrument extracts the variable directly. 
But the commercial instruments are inadequate for check 
valves because of their high price and large size.  

In this experiment the developed instruments extracts the 
feature point directly from raw data. The feature points of AE 
sensor are RMS (root mean squire), Peak amplitude, AE 
energy, Feature Frequency, Pressure and the explanation of 
parameter is presented below. 

 

(1) RMS valve  
In mathematics, the root mean square or rms is a statistical 

measure of the magnitude of a varying quantity. It can be 
calculated for a series of discrete values. The name comes 
from the fact that it is the square root of the mean of the 
squares of the values. RMS is usually used in measuring 

signal power. The RMS for a collection of N values {V1, 
V2, ... , VN} is:  
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N is number of acquisition data. (N = 65536)  
Here, Vi is output of sensor and N is total number of data 

which is maximum size of buffer 216.  
 

(2) Peak Amplitude  
Amplitude is a nonnegative scalar measure of a wave's 

magnitude of oscillation. The amplitude of a wave is the 
measure of the magnitude of the maximum disturbance in the 
medium during one wave cycle. The form of the variation of 
amplitude is called the Envelope detector of the wave.  

The Amplitude for a collection of N values {V1, V2, ... , 
VN} is:  
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We select m = 8, because the small value is better than the 
large one. If we select less than eight, it is too small to 
calculate the exact Amplitude by experience. 

 

(3) The Energy of acoustic emission (Signal Strength)  
The signal strength is the measurement of how strong a 

signal is. Typically, this is measured as voltage per square area. 
Power uses the volts per square meter (V/m²).  
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R is constant value. We select for "1" of R. It is simple and 
easy to handle the EAE  

 

(4) Characteristic Frequency  
The name MUSIC is an acronym for MUltiple SIgnal 

Classification. The MUSIC algorithm estimates the 
pseudo-spectrum from a signal or a correlation matrix using 
Schmidt's eigen-space analysis method. The algorithm 
performs eigen-space analysis of the signal's correlation 
matrix in order to estimate the signal's frequency content. This 
algorithm is particularly suitable for signals that are the sum of 
sinusoids with additive white Gaussian noise.  
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Where N is the dimension of the eigen-vectors and vk is the 
k-th eigen-vector of the correlation matrix. The integer p is the 
dimension of the signal subspace, so the eigen-vectors vk used 
in the sum correspond to the smallest eigen-values and also 
span the noise subspace. The vector e(f) consists of complex 
exponential, so the inner product VkHe(f)amounts to a Fourier 
transform. This is used for computation of the 
pseudo-spectrum estimate. The FFT is computed for each v1 
and then the squared magnitudes are summed. Freq1 is first 
peak value which was calculated by MUSIC algorithm. And 
Freq2 is second one. Fig. 8 shows to detect the Freq1 and 
Freq2 using Music algorithm. 

 
 

 
Fig.  8. Characteristic frequencies using MUSIC algorithm.  
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(5) Pressure  
Pressure is a measure of force per unit area. The 

international system of units of pressure is the Pascal (Pa), 
which is one newton per square meter. The bar is a 
measurement unit of pressure, 1 bar is equal to 100,000 Pa. 
The bar is still widely used by the general public and in 
industry because 1 bar as close as atmospheric pressure. We 
put three cases 3bar, 6bar and 9bar into the input of diagnosis 
part.  

 A
Fp =

                                             (5)  
Here, p is pressure and F is the force and A is the area.  
 

 4. FAILURE DAIGNOSIS ALGORITHM 
4.1 Back propagation algorithm of neural network  
 

An artificial neural network (ANN) can be defined as a 
computer processing system consisting of many simple 
processing elements joined together in a structure inspired by 
the cerebral cortex of the brain. These processing elements are 
usually organized in a sequence of layers, with full 
connections between layers. Typically, there are three (or 
more) layers: an input layer where data are presented to the 
network through an input buffer, an output layer with a buffer 
that holds the output response to a given input, and one or 
more intermediate or “hidden” layers 

The mathematical basis for back-propagation training of 
ANNs is straight-forward but intricate. It is well documented 
in the literature and well known; hence, only a qualitative 
description of the process will be given here. 

1) Set the weights to small random (both positive and 
negative) values to assure that the network training will not be 
overly influenced by large weight values. 

2) From the training input-output pair, select a training 
input/output vector pair and apply it to the network as the 
input and the desired output. 

3) Calculate the network output and the error (the 
difference between the network output and the desired output). 

4) Adjust the weight of the network to minimize this error. 
This process continues for each pair of input/output vectors 

in the whole training set (called an apoch) which is repeatedly 
applied until the error for the entire system is acceptably low. 
 

4.2 Proposed algorithm  
The neural net used in experiment is composed of three 

layers; input layers, hidden layers and output layers. The 
number of input layers is 6, and the number of hidden layers is 
12 and the number of output layers is 1 or 2. When we used to 
the neural net, it is necessary to configure the initial 
parameters. In this algorithm, when we select that moment rate 
is 0.7, weight and threshold 0.2, learning rate 0.1, the decline 
of sigmoid function 0.7, and error rate 0.01, these parameters 
are the best connection weight.  

It is necessary to make input data's range from "0" to "1" 
because of avoiding the saturation of sigmoid function and to 
have the identical weights of each data. The input data 
transformed to have a range from 0.1 to 0.9 by a numerical Eq. 
(6).  
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The training data for neural net is mean valve of feature 
points. The error converge below 0.001 every case.  

 
 

 
Fig.  9. Fault diagnosis algorithm. 

Table 3. A data of acquired from acoustic emission sensor. 
Condition of C.V. 3 Bar 6 Bar 9 Bar
Normal 100  100 100 
Disc Wear 1mm 100  100 100 
Disc Wear 2mm 100  100 100 
Disc Wear 3mm 100  100 100 
Foreign Object 0.5mm 100  100 100 
Foreign Object 1.0mm 100  100 100 
Foreign Object 1.2mm 100  100 100 
Foreign Object 1.5mm 100  100 100 
Foreign Object 2.0mm 100  100 100 
Foreign Object 2.4mm 100  100 100 
 

The Failure diagnosis algorithm consisted of three steps; 
fault detection, fault isolation and fault identification. The first 
is a fault detection step which distinguishes between normal 
and abnormal. In step 2, case of abnormal, the failure 
algorithm isolate of failure either disc wear or foreign object. 
The third is an identification step which performs a 
classification of failure’s magnitude. In case of disc wear, the 
algorithm classified the magnitude of disc wear and in case of 
foreign object the algorithm classified the magnitude of a 
foreign object. Fault diagnosis algorithms are presented in 
figure 9.  

Table 3 shows the experimented data which acquired form 
acoustic emission sensor for various conditions of failure type 
and pressure.   

  
 

4.3 Result of experiments 
 

Figure 10, 11, 12,13 shows the result of trained neural net 
output. The blue solid line represented the reference output 
and the red dots were the output. The numbers of input data 
and experiment modes are presented in x-axis. The diagonal 
line represents wrong decision in below figures.  

 
Fig. 10. Fault detection results of step 1. 
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The first output of neural net is presented left side and the 
second output is right side. The wrong decisions are 0% which 
was calculated by threshold value. The trained neural net 
perfectly distinguishes between normal and abnormal mode.  

 
Fig. 11. Fault isolation results of step 2. 

 

In second step, the results of neural net were perfectly 
distinguished between disc wear and foreign object except for 
the case of foreign object 0.5mm-3bar. 

 

 
Fig. 12. Fault identification results of step 3-1 (DW).            

 

The output of step 3-1 shows low error rate of 5.33%. The 
highest error occurred 1mm-9bar.  

 

 
Fig. 13. Fault identification results of step 3-2 (FO).  

    
The output of step 3-2 shows the error rate of 12.68%. The 

highest error occurred 2mm.  

Above experiment, we can derive some conclusions. The 
first, step 1 (fault detection step) perfectly distinguishes 
between normal and abnormal. The second, step 2 (fault 
isolation step) distinguishes the cause of failures; which are 
disc wear, foreign object almost perfectly. The third (fault 
identification step), step 3-1, step 3-2 distinguish the size of 
failure perfectly except some specific range which is 
1mm-9bar in disc wear and 2mm in foreign object.  

 
5. CONCLUSIONS 

In this paper we develop a condition monitoring system of 
check valves. The suggested condition monitoring method 
using neural network in this research seems to be a good 
solution capable of detecting and isolation of failure type and 
identifying the failed check valve in any physical conditions 
including power operation and the maintenance period. The 
developed system enables timely detection of failure of check 
valves before loss of safety function. The developed system 
seems to plays a vital role in the next generation nuclear 
power plant for monitoring of check valves.  
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