• 제목/요약/키워드: Newton's Method

검색결과 341건 처리시간 0.025초

ON THE APPLICABILITY OF TWO NEWTON METHODS FOR SOLVING EQUATIONS IN BANACH SPACE

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.369-378
    • /
    • 1999
  • In This study we examine the applicability of Newton's method and the modified Newton's method for a, pp.oximating a lo-cally unique solution of a nonlinear equation in a Banach space. We assume that the newton-Kantorovich hypothesis for Newton's method is violated but the corresponding condition for the modified Newton method holds. Under these conditions there is no guaran-tee that Newton's method starting from the same initial guess as the modified Newton's method converges. Hence it seems that we must always use the modified Newton method under these condi-tions. However we provide a numerical example to demonstrate that in practice this may not be a good decision.

아르스 마그나와 프린키피아에 나오는 수치해석적 기법

  • 이무현
    • 한국수학사학회지
    • /
    • 제15권3호
    • /
    • pp.25-34
    • /
    • 2002
  • This paper explains methods of numerical analysis which appear on Cardano's Ars Magna and Newton's Principia. Cardano's method is secant method, but its actual al]plication is severely limited by technical difficulties. Newton's method is what nowadays called Newton-Raphson's method. But mysteriously, Newton's explanation had been forgotten for two hundred years, until Adams rediscovered it. Newton had even explained finding the root using the second degree Taylor's polynomial, which shows Newton's greatness.

  • PDF

CONVERGENCE OF THE NEWTON METHOD FOR AUBIN CONTINUOUS MAPS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • 제25권2호
    • /
    • pp.153-157
    • /
    • 2009
  • Motivated by optimization considerations we revisit the work by Dontchev in [7] involving the convergence of Newton's method to a solution of a generalized equation in a Banach space setting. Using the same hypotheses and under the same computational cost we provide a finer convergence analysis for Newton's method by using more precise estimates.

NEWTON'S METHOD FOR EQUATIONS RELATED TO EXPONENTIAL FUNCTION

  • Jeong, Moonja
    • Korean Journal of Mathematics
    • /
    • 제9권1호
    • /
    • pp.67-73
    • /
    • 2001
  • For some equation related with exponential function, we seek roots and find the properties of the roots. By using the relation of the roots and attractors, we find a region in the basin of attraction of the attractor at infinity for Newton's method for solving given equation.

  • PDF

LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS

  • Argyros Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.261-267
    • /
    • 2006
  • A local convergence analysis of Newton's method for perturbed generalized equations is provided in a Banach space setting. Using center Lipschitzian conditions which are actually needed instead of Lipschitzian hypotheses on the $Fr\'{e}chet$-derivative of the operator involved and more precise estimates under less computational cost we provide a finer convergence analysis of Newton's method than before [5]-[7].

  • PDF

A COMPARATIVE STUDY BETWEEN CONVERGENCE RESULTS FOR NEWTON'S METHOD

  • Argyros, Ioannis K.;Hilout, Said
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권4호
    • /
    • pp.365-375
    • /
    • 2008
  • We present a new theorem for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. Under a gamma-type condition we show that we can extend the applicability of Newton's method given in [12]. We also provide a comparative study between results using the classical Newton-Kantorovich conditions ([6], [7], [10]), and the ones using the gamma-type conditions ([12], [13]). Numerical examples are also provided.

  • PDF

ON THE RADIUS OF CONVERGENCE OF SOME NEWTON-TYPE METHODS IN BANACH SPACES

  • Argyros, Ioannis K.;Hilout, Said
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권3호
    • /
    • pp.219-230
    • /
    • 2011
  • We determine the radius of convergence for some Newton{type methods (NTM) for approximating a locally unique solution of an equation in a Banach space setting. A comparison is given between the radii of (NTM) and Newton's method (NM). Numerical examples further validating the theoretical results are also provided in this study.

AN IMPROVED UNIFYING CONVERGENCE ANALYSIS OF NEWTON'S METHOD IN RIEMANNIAN MANIFOLDS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.345-351
    • /
    • 2007
  • Using more precise majorizing sequences we provide a finer convergence analysis than before [1], [7] of Newton's method in Riemannian manifolds with the following advantages: weaker hypotheses, finer error bounds on the distances involved and a more precise information on the location of the singularity of the vector field.

ON THE ORDER AND RATE OF CONVERGENCE FOR PSEUDO-SECANT-NEWTON'S METHOD LOCATING A SIMPLE REAL ZERO

  • Kim, Young Ik
    • 충청수학회지
    • /
    • 제19권2호
    • /
    • pp.133-139
    • /
    • 2006
  • By combining the classical Newton's method with the pseudo-secant method, pseudo-secant-Newton's method is constructed and its order and rate of convergence are investigated. Given a function $f:\mathbb{R}{\rightarrow}\mathbb{R}$ that has a simple real zero ${\alpha}$ and is sufficiently smooth in a small neighborhood of ${\alpha}$, the convergence behavior is analyzed near ${\alpha}$ for pseudo-secant-Newton's method. The order of convergence is shown to be cubic and the rate of convergence is proven to be $\(\frac{f^{{\prime}{\prime}}(\alpha)}{2f^{\prime}(\alpha)}\)^2$. Numerical experiments show the validity of the theory presented here and are confirmed via high-precision programming in Mathematica.

  • PDF