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AN IMPROVED NEWTON–KANTOROVICH THEOREM
AND INTERIOR POINT METHODS

Ioannis K. Argyros

Abstract. We use an improved Newton–Kantorovich theorem intro-

duced in [2] to analyze interior point methods. Our approach requires

less number of steps than before [5] to achieve a certain error tolerance
for both Newton’s and Modified Newton’s methods.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F (x) = 0, (1)

where F is a differentiable operator defined on a domain D of Ri (i an integer)
with values in Ri.

The famous Newton–Kantorovich theorem [4] has been used extensively to
solve equation (1). A survey of such results can be found in [1] and the refer-
ences there. Recently [2], [3] we improved the Newton–Kantorovich theorem.
Here we use this development to show that the results obtained in the elegant
work in [5] in connection with interior point methods can be improved if our
convergence conditions simply replace the stronger ones given there.

Finally a numerical example is provided to show that fewer iterations than
the ones suggested in [5] are needed to achieve the same error tolerance.

2. An improved Newton–Kantorovich theorem

Let ‖ · ‖ be a given norm on Ri, and x0 be a point of D such that the closed
ball of radius r centered at x0,

U(x0, r) = {x ∈ Ri : ‖ x− x0 ‖≤ r} (2)
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is included in D, i.e.
U(x0, r) ⊆ D. (3)

We assume that the Jacobian F ′(x0) is nonsingular and that the following
affine-invariant Lipschitz condition is satisfied:

‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ ω ‖x− y‖ (4)

for all x, y ∈ U(x0, r).

The famous Newton–Kantorovich Theorem [4] states that if the quantity

α := ‖F ′(x0)−1F (x0)‖ (5)

together with ω satisfy

k = αω ≤ 1
2
, (6)

then there exists x∗ ∈ U(x0, r) with F (x∗) = 0. Moreover the sequences
produced by Newton’s method

xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (7)

and by the modified Newton method

yn+1 = yn − F ′(y0)−1F (yn), y0 = x0 (n ≥ 0) (8)

are well defined and converge to x∗.

In [2], [3] we introduced the center–Lipschitz condition

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ ω0‖x− x0‖ (9)

for all x ∈ U(x0, r) and provided a finer local and semilocal convergence analysis
of method (7) by using the combination of conditions (4) and (9) given by

k0 = αω ≤ 1
2
, (10)

where,

ω =
ω0 + ω

2
. (11)

In general
ω0 ≤ ω (12)

holds, and ω
ω0

can be arbitrarily large [3]. Note also that

k ≤ 1
2
⇒ k0 ≤ 1

2
(13)

but not vice versa unless if ω0 = ω. Examples where weaker condition (10)
holds but (6) fails have been given in [2], [3].
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Similarly by simply replacing ω with ω0 (since (9) instead of (4) is actually
needed in the proof) and condition (6) by the weaker

k1 = αω0 ≤
1
2

(14)

in the proof of Theorem 1 in [5] we show that method (8) also converges to x∗

and the improved bounds

‖yn − x∗‖ ≤
2β0λ

2
0

1− λ2
0

ξn−1
0 (n ≥ 1) (15)

where

β0 =
√

1− 2k1

ω0
, λ0 =

1−
√

1− 2k1 − h1

k1
and ξ0 = 1−

√
1− 2k1, (16)

hold. In case ω0 = ω (15) reduces to (12) in [5]. Otherwise our error bounds
are finer. Note also that

k ≤ 1
2
⇒ k1 ≤ 1

2
(17)

but not vice versa unless if ω0 = ω. Let us provide an example to show that
(14) holds but (6) fails.

Example 1. Let i = 1, x0 = 1, D = [p, 2− p], p ∈
[
0, 1

2

)
, and define functions

F on D by
F (x) = x3 − p. (18)

Using (4), (5) and (9) we obtain

α =
1
3

(1− p), ω = 2(2− p) and ω0 = 3− p, (19)

which imply that

k =
2
3

(1− p)(2− p) > 1
2

for all p ∈
[
0,

1
2

)
(20)

whereas condition (14) holds for all p ∈
[
4−
√

10
2 , 1

2

)
.

The above suggest that all results on interior point methods obtained in
[5] for Newton’s method using (6) can now be rewritten using only (10). The
same holds true for the modified Newton’s Method where (14) also replaces (6).

For example k1 and k2 can be replaced by k0
1, k0

2 (k0
2 < .5) in the case of

Newton’s method (7) and by k1
1, k1

2 (k1
2 < .5) in the case of the modified New-

ton method (8) respectively in all the results in [5] where they appear.

Since k1
k0
1
, k2

k0
2
, k1

k1
1
, k2

k1
2

can be arbitrarily large [3] for a given triplet α, ω and
ω0, the choices

k0
1 = k1

1 = .12, k0
2 = k1

2 = .24 when k1 = .21 and k2 = .42
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and
k0
1 = k1

1 = .24, k0
2 = k1

2 = .48 when k1 = .245 and k2 = .49
are possible. As in [5] denote by N the number of Newton steps, by S the
number of the modified Newton steps and by χ the parameter appearing in
Corollary 4 in [5]. Then by using formulas (9), (10) and (11) in Corollary 4
and Theorem 2 in [5] we obtain the following tables:

(a) If the HLCP is monotone and only Newton directions are performed,
then:

Potra (9) Argyros (9)
χ(.21, .42) > .17 χ(.12, .24) > .1

χ(.245, .49) > .199 χ(.24, .48) > .196

Potra (10) Argyros (10)
N(.21, .42) = 2 N(.12, .24) = 1

N(.245, .49) = 4 N(.24, .48) = 3

(b) If the HLCP is monotone and Modified Newton directions are per-
formed:

Potra (9) Argyros (11)
χ(.21, .42) > .149 χ(.12, .24) > .098

χ(.245, .49) > .164 χ(.24, .48) > .162

Potra (11) Argyros (11)
S(.21, .42) = 5 S(.12, .24) = 1

S(.245, .49) = 18 S(.24, .48) = 12

All the above improvements are obtained under weaker hypotheses and the
same computational cost (in the case of Newton’s method) or less computa-
tional cost (in the case of the modified Newton method) since in practice the
computation of ω requires that of ω0 and in general the computation of ω0 is
less expensive than that of ω.
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