• Title/Summary/Keyword: Natural filler

Search Result 93, Processing Time 0.022 seconds

Resistance of Wood Plastic Composites Having Silica Filler to Subterranean Termite

  • Aujchariya CHOTIKHUN;Wa Ode Muliastuty ARSYAD;Emilia-Adela SALCA;Yusuf Sudo HADI;Salim HIZIROGLU
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.331-342
    • /
    • 2024
  • Rubberwood (Hevea brasiliensis) has excellent physical and mechanical properties and is one of the most widely used species in Southeast Asia. However, it has poor resistance to subterranean termite attacks due to its high sugar and starch contents. The objective of this study was to evaluate the termite resistance of experimental wood-plastic composite (WPC) panels manufactured from rubberwood flour, polyethylene terephthalate, and silica in three different weight ratios (1/2/7, 1/3/6, and 1/4/5). The panels were exposed to Coptotermes curvignathus subterranean termites in a no-choice test under laboratory conditions based on Indonesian standards. Solid rubberwood used as control samples presented poor resistance, exhibiting 23.1% weight loss due to subterranean termite attack, as indicated by low termite mortality and high wood weight loss. In contrast, the WPC samples demonstrated extreme resistance, with weight loss ranging from 0.19% to 0.23%. Based on the findings of this study, the high termite mortality and overall low mass loss of the samples indicate that such manufactured panels could provide a high level of protection with regard to Indonesian standards.

Evaluation and Fabrication of Composite Bipolar Plate to Develop a Light Weight Direct Methanol Fuel Cell Stack for Small-scale UAV Application (I) (무인항공기용 경량화 직접메탄올연료전지 스택 개발을 위한 복합소재 분리판 제작 및 성능 평가 (I))

  • Kang, Kyung-Mun;Park, Sung-Hyun;Kim, Jin-Soo;Ji, Hyun-Jin;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • A bipolar plate is a major component of a fuel cell stack, which occupies 50~60% of the total weight and over 50% of the total cost of a typical fuel cell stack. In this study, a composite bipolar plate is designed and fabricated to develop a compact and light-weight direct methanol fuel cell (DMFC) stack for a small-scale Unmanned Aerial Vehicle (UAV) application. The composite bipolar plates for DMFCs are prepared by a compression molding method using resole type phenol resin as a binder and natural graphite and carbon black as a conductor filler and tested in terms of electrical conductivity, mechanical strength and hydrogen permeability. The flexural strength of 63 MPa and the in-plane electrical conductivities of 191 S $cm^{-1}$ are achieved under the optimum bipolar plate composition of phenol : 18%; natural graphite : 82%; carbon black : 3%, indicating that the composite bipolar plates exhibit sufficient mechanical strength, electrical conductivity and hydrogen permeability to be applied in a DMFC stack. A DMFC with the composite bipolar plate is tested and shows a similar cell performance with a conventional DMFC with graphite-based bipolar plate.

Ultrastructure and Filtrating Function of the Ciliated Epithelial Cells of Foregut in Urechis unicinctus (개불(Urechis unicinctus) 전장 섬모 상피세포의 미세구조와 여과기능)

  • Shin, Kil-Sang;Lee, Sun-Hee
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.435-446
    • /
    • 1998
  • It is suggested that Urechis unicinctus is a filler feeder as like many tide and watery invertebrates which filtrate food materials by ciliary movement. However, the structure of the filter is not yet known in U. unicinctus, nor the filtering mechanism is not well understood. This study reveals ciliated epithelial cells in the foregut and the features of the cilia are good accord with that of known filtrating apparatus of other tide animals. This may implies that the foregut is in function of filtration and the food materials are filtrated by the ciliary movement. With the observation of the filtrating apparatus in the foregut, the intestine of U. unicinctus can be functionally compartmented into 3 parts. These are already known midgut and hindgut in function of digestion and respiration respectively, and the foregut in function of filtrating apparatus for foods. The filtrating apparatus of U. unicinctus is composed of the pseudostratified columnar epithelial cells with numerous cilia. The cilia are well differentiated kinocilia with the typical microtubule pattern, kinetosome and cilia roots. There are two kinds of striated cilia roots, the main root and the accessory root. The main root is extended perpendicularly from the cell surface to basement membrane and the short accessory root is branched with an acute angle of about $80^{\circ}$ from the main root at level of basal plate of the kinetosome. The spacial approaches of the main root with the large fused form of mitochondria is one of the characteristic features which might be in structural consideration an intimate association between energy source and energy mass consuming cell organelles.

  • PDF

Electrical Resistivity of Natural Graphite-Fluorine Resin Composite for Bipolar Plates of Phosphoric Acid Fuel Cell(PAFC) Depending on Graphite Particle Size (인산형 연료전지 분리판용 천연흑연-불소수지계 복합재료의 흑연입도에 따른 전기비저항 변화)

  • Lee, Sang-Min;Beak, Un-Gyeong;Kim, Tae-Jin;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.664-671
    • /
    • 2017
  • A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and $37.7{\mu}m$. The density of the composite increased from 2.25 to $2.72g/cm^3$ as the graphite size increased from 37.7 to $610.3{\mu}m$. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were $1.99{\times}10^{-3}{\Omega}cm$ and 2.02 %, respectively, when the graphite size was $401.6{\mu}m$. The flexural strength of the composite was 10.3MPa when the graphite size was $401.6{\mu}m$. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites (이산화티탄 나노입자 필러가 PET와 PLA 나노복합체의 특성에 미치는 영향)

  • Farhoodi, Mehdi;Dadashi, Saeed;Mousavi, Seyed Mohammad Ali;Sotudeh-Gharebagh, Rahmat;Emam-Djomeh, Zahra;Oromiehie, Abdolrasul;Hemmati, Farkhondeh
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.745-755
    • /
    • 2012
  • Two types of polymers were tested in this study; poly(ethylene terephthalate) (PET) as a synthetic example and poly(lactic acid) (PLA) as a natural polymer. DSC analyses showed that the use of nanofiller increased the degree of crystallinity ($X_c$) of both PET and PLA polymers, but the effect was more noticeable on PET nanocomposites. The crystallization of PLA and PET nanocomposites occurred at higher temperatures in comparison to neat polymers. According to dynamic mechanical-thermal analysis (DMTA), the damping factor of PET/$TiO_2$ nanoparticles decreased compared to the neat matrix, but for PLA nanocomposites the opposite trend was observed. Results of the mechanical test showed that for both PET and PLA nanocomposites, the most successful toughening effect was observed at 3 wt% loading of $TiO_2$ nanoparticles. SEM micrographs revealed uniform distribution of $TiO_2$ nanoparticles at 1 and 3 wt% loading levels. The results of WAXD spectra explained that the polymorphs of PLA and PET was not affected by $TiO_2$ nanoparticles. UV-visible spectra showed that $TiO_2$ nanocomposite films had high ultraviolet shielding compared to neat polymer, but there was significant reduction in transparency.

Influence of Hwangto on the Mechanical Properties of Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-78
    • /
    • 2007
  • The mechanical properties of wood flour, Hwangto (325 and 1,400 mesh per 25,4 mm) and coupling agent-reinforced HDPE composites were investigated in this study. Hwangto and maleated polyethylene (MAPE) were used as an inorganic filler and a coupling agent, respectively. The addition of Hwangto and MAPE to virgin HDPE also increased the Young's modulus in the smaller degree. The addition of wood flour and Hwangto to virgin HDPE increased the tensile strength, due to the high uniform dispersion of HDPE by high surface area of Hwangto in HDPE and wood flour. MAPE also significantly increased the tensile strength. When wood flour was added, there was no notable difference on the tensile properties, in terms of Hwangto particle size. Hwangto also improved the flexural modulus and strength of reinforced HDPE composites. With different particle sizes of Hwangto, there was no considerable difference in flexural modulus and strength of reinforced HDPE composites. The addition of Hwangto showed slightly lower impact strength than that of wood flour. However, the particle size of Hwangto showed no significant effect on the impact strength of reinforced composites. In conclusion, reinforced HDPE composites with organic and inorganic fillers provide highly improved mechanical properties over virgin HDPE.

A scientific analysis of pigments for the Ilweoloakdo (일원오악도 안료에 대한 과학적 분석)

  • Han, Min-Su;Hong, Jong-Ouk
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.165-188
    • /
    • 2005
  • From the ancient to these days, there have been used many kinds of pigment which have two types that are inorganic pigment and organic pigment. At the ancient times, natural pigment had been used but the artificially mixed pigment has been used in modern times. By the way, searching for studies has been studied recently, it would be said the ancient pigments such as Danchung, Wall painting and Mural painting are the mainthema. However, studies about the pigments used in modern pictured relics have rarely can be found. Therefore, this analysis of Ilweolokdo would be important at the point of the pigments used in pictures of royal family in modern times and the results can be briefly summarized as below; Firstly, the results of qualitative analysis of the pigments that base or all pigments of picture was detected components of Ca, Fe and As, this results meaning that picture was used filler and basic paint. Secondly, a result of the analysis on the composition elements of the pigments shows that the main components in their composition are ;White - Lead Cyanamide($2PbCO_3$.$Pb(OH)_2$) or Titanium Oxide($TiO_2$)Blue - Ultramarine($2(Na_2O$.$Al_2O_3$ .$2Si_O2$).$Na_2S_2$)Green - Emerald green($C_2H_3A_s3Cu_2O_8$)Gold - Gold(Au), Red-Red Lead($Pb_3O_4$) or Cinnabar(HgS)Black - Carbon(C)Thirdly, X-ray diffraction analysis of crystalline structure for the blue and green pigment peeling off in picture shows that the components of blue pigment is Ultramarine($2(Na_2O$.$Al_2O_3$ .$2Si_O2$).$Na_2S_2$) and green pigment is Emerald green($C_2H_3A_s3Cu_2O_8$). Especially, microcrystalline structure of the green pigment was the shape like a cross section of wood. Consequently, we knew through the analysis of qualitative and microcrystallinestructures seen on the cross section of analyzed pigments layer that the all pigments used in the Ilweoloakdo is possible to use synthetic pigments in modern.

  • PDF

Preparation and Mechnical Properties of Biodegradable Plastic Natural Fiber Composite (생분해성 플라스틱 천연Fiber 복합체의 물리적 특성)

  • Lee, Dong-Hyun;Kim, Sung-Tae;Kim, Dong-Gye;Kim, Sang-Gu;Park, Byung-Wok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.79-79
    • /
    • 2011
  • 최근 플라스틱 제품의 사용후 폐기에서 발생 되는 환경적인 문제점들이 대두 되고 있는 가운데, 이러한 제품에 대한 친환경적인 재료 설계에 대한 요구가 거세지고 있는 실정으로 플라스틱 업계의 사활이 걸릴 정도의 중요한 문제로 부각되고 있다. 본 연구에서는 이러한 플라스틱 제품의 치명적인 환경적인 문제점을 극복하고자, Matrix 물질이 되는 플라스틱에서 부터 친 환경적인 생분해성 수지를 사용하면서, 물성의 강화제로써 천연물 유래의 여러 종류의 섬유를 사용하고자 하였다.가장 보편화된 생분해성 플라스틱인 지방족 폴리에스테르 계통의 생분해성 수지와 Polylactic acid에 대해 검토를 하였다. 지방족 폴리에스테르 의 경우는 기존 플라스틱 제품과 비교해서 유연하고, 신장율이 높고, PLA 대비 내열 사용한계 온도도 높아서 물성적인 측면에서 상당한 장점을 가지고는 있으나 가격이 매우 고가이므로, 기존 플라스틱을 대체하는 것에는 문제점이 있다. 반면 PLA의 경우 지방족 폴리에스테르 대비 절반 이하의 가격이고 기계적 강도 또한 매우 높기 때문에 기존의 플라스틱을 대체할 수 있는 가장 유력한 물질로 대두 되고 있으나, 사출물과 같은 충격이 요구되는 제품에 있어서는 PLA 고유의 약한 취성이 가장 큰 단점으로 지적되고 있다. 본 연구에서는 이러한 PLA를 기반으로 PLA의 장점이 기계적 강성을 유지하면서, 취성을 보완하기 위해 PBS를 혼합 할 수 있는 기술을 개발하였으며, 또한 원재료의 Cost를 줄이고, PBS 혼합에 따른 PLA의 기계적 강도 감소를 보완하기 위해 천연물 유래의 Wood fiber, Starch, Bamboo fiber, Cellulose fiber, Paper fiber 와 같은 각종 천연 Filler를 사용하여 기계적 기계적 강도 감소를 최소화 하였다.

  • PDF