References
- Abo-Dahab, S.M., Abouelregal, A.E. and Marin, M. (2020), "Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam", Symmetry, 12(7), https://doi.org/10.3390/sym12071094.
- Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
- Afrookhteh, S.S., Fathi, A., Naghdipour, M. and Alizadeh Sahraei, A. (2016), "An experimental investigation of the effects of weight fractions of reinforcement and timing of hardener addition on the strain sensitivity of carbon nanotube/polymer composites", U.P.B. Sci. Bull., Series B, 78(4), 121-130.
- Afrookhteh, S.S., Shakeri, M., Baniassadi, M. and Alizadeh Sahraei, A. (2018), "Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution", Fuel Cells, 18(2), https://doi.org/10.1002/fuce.201700239.
- Al-Fasih, M.Y., Kueh, A.B.H. and Ibrahim, M.H.W. (2020), "Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins", Steel Compos. Struct., 34(2), 299-308, https://doi.org/10.12989/scs.2020.34.2.299.
- Al-Fasih, M.Y., Kueh, A.B.H. and Ibrahim, M.H.W. (2020), "Failure behavior of sandwich honeycomb composite beam containing crack at the skin", PLOS ONE, https://doi.org/10.1371/journal.pone.0227895.
- Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2017), "Influence of tows waviness and anisotropy on effective Mode I fracture toughness of triaxially woven fabric composites", Eng. Fracture Mech., 182, 521-526. https://doi.org/10.1016/j.engfracmech.2017.03.051.
- Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253, https://doi.org/10.12989/scs.2018.26.2.241.
- Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
- Bardell, N.S. (1992), "The free vibration of skew plates using the hierarchical finite element method", Comput. Struct., 45, 841-874. https://doi.org/10.1016/0045-7949(92)90044-Z
- Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
- Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882.
- Bi, H., Xie, X., Yin, K., Zhou, Y., Wan, S., He, L. (2012), "Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents", Adv. Funct. Mater., 22, 4421-4425. https://doi.org/10.1002/adfm.201200888.
- Bi, H., Yin, K., Xie, X., Zhou, Y., Wan, N. and Xu, F. (2012), "Low temperature casting of graphene with high compressive strength", Adv. Mater., 24, 5124-5129. https://doi.org/10.1002/adma.201201519.
- Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
- Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
- Bouafia, H., Chikh, A., Bousahla,A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi,A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.239.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
- Chen, S., Bao, P., Huang, X., Sun, B. and Wang, G. (2014), "Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance", Nano Res., 7, 85-94. https://doi.org/10.1007/s12274-013-0374-y.
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
- Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S. and Cheng, H.M. (2011), "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition", Nat. Mater., 10, 424-428. https://doi.org/10.1038/nmat3001
- Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
- Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
- Embrey, L., Nautiyal, P., Loganathan, A., Idowu, A., Boesl, B. and Agarwal, A. (2017) "Three-dimensional graphene foam induces multifunctionality in epoxy nanocomposites by simultaneous improvement in mechanical, thermal, and electrical properties", ACS Appl. Mater. Interfaces, 9, 39717-39727. https://doi.org/10.1021/acsami.7b14078
- Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Ahmadi Dastjerdi, A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
- Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B, 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021.
- Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
- Guan, L.Z., Zhao, L., Wan, Y.J. and Tang, L.C. (2018), "Three-dimensional graphene-based polymer nanocomposites: Preparation, properties and applications", Nanoscale, 10, 14788-14811. https://doi.org/10.1039/C8NR03044H.
- Gupta, A.K. and Sharma, S. (2014), "Free transverse vibration of orthotropic thin trapezoidal plate of parabolically varying thickness subjected to linear temperature distribution", Shock Vib., 2014, 1-6. http://dx.doi.org/10.1155/2014/392325.
- Gupta, A.K. and Sharma, P. (2016), "Vibration study of nonhomogeneous trapezoidal plates of variable thickness under thermal gradient", J.V.C. Control, 22(5), 1369-1379. https://doi.org/10.1177/1077546314535280.
- Gurses, M., Civalek, O., Ersoy, H., Kiracioglu, O. (2009), "Analysis of shear deformable laminated composite trapezoidal plates", Mater. Des., 30, 3030-3035. https://doi.org/10.1016/j.matdes.2008.12.016.
- Haldar, S. and Manna, M.C. (2003), "A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates", Steel Compos. Struct., 3(3), 213-229. https://doi.org/10.12989/scs.2003.3.3.213
- Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
- Hanifehzadeh, M. and Mousavi, M.M.R. (2019), "Prediction the structural performance of sandwich concrete panels subjected to blast load considering dynamic increase factor", J. Civil Eng. Sci. Technol., 10(1), 45-58. https://doi.org/10.33736/jcest.1067.2019.
- Houmat, A. (2001), "A sector Fourier p-element applied to free vibration analysis of sectorial plates", J. Sound Vib., 243(2), 269-282. https://doi.org/10.1006/jsvi.2000.3410
- Hu, H., Zhao, Z., Wan, W., Gogotsi, Y. and Qiu, J. (2013), "Ultralight and highly compressible graphene aerogels", Adv. Mater., 25, 2219-2223. https://doi.org/10.1002/adma.201204530.
- Idowu, A., Boesl, B. and Agarwal, A. (2018), "3D graphene foam-reinforced polymer composites", A review, Carbon, 135, 52-71. https://doi.org/10.1016/j.carbon.2018.04.024.
- Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 1-31. https://doi.org/10.1177/1099636215590280.
- Kapidzic, Z. (2013), "Strength analysis and modeling of hybrid composite-aluminum aircraft structures", Linkoping Studies Sci. Technol., Licentiate Thesis No. 1590.
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399.
- Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
- Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subjected to certain complicating effects", J. Sound Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
- Lemaitre, J. and Chaboche, J.L. (1990), "Mechanics of Solid Materials", Cambridge University Press: New York, NY, USA.
- Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-d orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35(2), 129-139. https://doi.org/10.1016/0020-7403(93)90071-2.
- Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623.
- Liew, K.M., Xiang, Y., Kitipomchai, S. and Wang, C.M. (1993), "Vibration of thick skew plates based on Mindlin shear deformation plate theory", J. Sound Vib., 168, 39-69. https://doi.org/10.1006/jsvi.1993.1361
- Lv, L., Zhang, P., Cheng, H., Zhao, Y., Zhang, Z. and Shi, G. (2016), "Solution-processed ultraelastic and strong air-bubbled graphene foams", Small, 12, 3229-3234. https://doi.org/10.1002/smll.201600509.
- Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness skew plate", Eng. Struct., 27, 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017.
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Probl., 2013(1-14), 135.
- Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188.
- Marin, M., Seadawy, A. Vlase, S. and Chirila, A. (2022), "On mixed problem in thermoelasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.2160290.
- Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes rendus de l'Academie des sciences Paris, Serie II, B, 321(12), 475-480.
- Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71, 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
- McGee, O.G., Kim, J.W. and Kim, Y.S. (1996), "Corner stress singularity effects on the vibration of rhombic plates with combinations of clamped and simply supported edges", J. Sound Vib., 193(13), 555-580. https://doi.org/10.1006/jsvi.1996.0302
- Mukhopadhyay, M. (1979), "A semi-analytic solution for free vibration of annular sector plates", J. Sound Vib., 63(1), 87-95. https://doi.org/10.1016/0022-460X(79)90379-1
- Mukhopadhyay, M. (1982), "Free vibration of annular sector plates with edges possessing different degrees of rotational restraints", J. Sound Vib., 80(2), 275-279. https://doi.org/10.1016/0022-460X(82)90196-1.
- Ni, Y., Chen, L., Teng, K., Shi, J., Qian, X. and Xu, Z. (2015), "Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton", ACS Appl. Mater. Interfaces, 7, 11583-11591. https://doi.org/10.1021/acsami.5b02552
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct, Eng. Mech, 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
- Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.
- Qiu, L., Huang, B., He, Z., Wang, Y., Tian, Z. and Liu, J.Z. (2017), "Extremely low density and super compressible graphene cellular materials", Adv. Mater., 29, 1-6. https://doi.org/10.1002/adma.201701553.
- Rajabi, J. and Mohammadimehr, M. (2019), "Hydro-thermomechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.
- Ramaiah, G.K. and Vijayakumar, K. (1974), "Natural frequencies of circumferentially truncated sector plates with simply supported straight edges", J. Sound Vib., 34(1), 53-61. https://doi.org/10.1016/S0022-460X(74)80354-8
- Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., 27(6), 717-725. https://doi.org/10.12989/scs.2018.27.6.717.
- Reddy J.N. (2013), An Introduction to Continuum Mechanics, Cambridge University Press.
- Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
- Saidi, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221.
- Salah, F., Boucham, B., Bourada, F. and Benzair, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
- Seok, J.W. and Tiersten, H.F. (2004), "Free vibrations of annular sector cantilever plates part 1: Out-of-plane motion", J. Sound Vib., 271(3-5), 757-772. https://doi.org/10.1016/S0022-460X(03)00414-0.
- Setoodeh, A.R. and Shojaee, M. (2016), "Application of TW-DQ method to nonlinear free vibration analysis of FG carbon nanotube-reinforced composite quadrilateral plates", Thin-Wall. Struct., 108, 1-11. http://dx.doi.org/10.1016/j.tws.2016.07.019.
- Sha, J., Li, Y., Villegas Salvatierra, R., Wang, T., Dong, P. and Ji, Y. (2017), "Three-dimensional printed graphene foams", ACS Nano, 11(7), 6860-6867. https://doi.org/10.1021/acsnano.7b01987.
- Sharma, K. and Marin, M. (2013), "Effect of distinct conductive an thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", UPB Sci. Bull., Series A Appl. Mathem. Phys., 75(2), 121-132.
- Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683.
- Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.
- Shen, H.S., Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Shokrollahi, S. and Shafaghat, S. (2016), "A global Ritz formulation for the free vibration analysis of hybrid metal-composite thick trapezoidal plates", Scientia Iranica Transactions B: Mech. Eng., 23(1), 249-259.
- Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
- Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. B Eng., 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004.
- Strek, W., Tomala, R., Lukaszewicz, M. and Cichy, B., Gerasymchuk, Y. and Gluchowski, P. (2017), "Laser induced white lighting of graphene foam", Sci. Rep., 7.
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
- Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2018), "The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic", Steel Compos. Struct., 29(5), 647-657, https://doi.org/10.12989/scs.2018.29.5.647.
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277, https://doi.org/10.12989/scs.2020.34.2.261.
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727, https://doi.org/10.12989/scs.2019.33.5.717.
- Torabi, K. and Afshari, H. (2017), "Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness", Eng. Solid Mech., 30(8), 71-92. https://doi.org/10.5267/j.esm.2016.7.001.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.
- Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
- Wang, C., Zhang, C. and Chen, S. (2016), "The microscopic deformation mechanism of 3D graphene foam materials under uniaxial compression", Carbon, 109, 666-672. https://doi.org/10.1016/j.carbon.2016.08.084.
- Woo, K.S., Hong, C.H., Basu, P.K. and Seo, C.G. (2003), "Free vibration of skew Mindlin plates by p-version of F.E.M.", J. Sound Vib., 268, 637-656. https://doi.org/10.1016/S0022-460X(02)01536-5
- Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
- Wu, Y., Yi, N., Huang, L., Zhang, T., Fang, S. and Chang, H. (2015), "Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio", Nat. Commun., 6, https://doi.org/10.1038/ncomms7141.
- Wang, Y.Q. and Zhang Z.Y. (2019), "Bending and buckling of three-dimensional graphene foam plates", Results Phys., 13, https://doi.org/10.1016/j.rinp.2019.02.072.
- Xu, X., Li, H., Zhang, Q., Hu, H., Zhao, Z. and Li, J. (2015), "Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer Deformable in a Magnetic Field", ACS Nano, 9, 3969-3977. https://doi.org/10.1021/nn507426u.
- Xu, Y., Sheng, K., Li, C. and Shi, G. (2010), "Self-assembled graphene hydrogel via a one-step hydrothermal process", ACS Nano, 4, 4324-4330.
- Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.M. and Koratkar, N. (2011), "High sensitivity gas detection using a macroscopic three-dimensional graphene foam network", Sci. Rep., 1, 1-5. https://doi.org/10.1038/srep00166.
- Zamani, M., Fallah, A. and Aghdam, M.M. (2012), "Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions", Europ. J. Mech. A/Solids, 36(2012), 204-212. https://doi.org/10.1016/j.euromechsol.2012.03.004.
- Zhao, Z., Feng, C., Dong, Y., Wang, Y. and Yang, J. (2019), "Geometrically nonlinear bending of functionally graded nanocomposite trapezoidal plates reinforced with graphene platelets (GPLs)", Int. J. Mech. Mater. Des., 15(4). https://doi.org/10.1007/s10999-019-09442-4.
- Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, https://doi.org/10.1016/j.compstruct.2017.08.044.
- Zhang, Q., Xu, X., Li, H., Xiong, G., Hu, H. and Fisher, T.S. (2015), "Mechanically robust honeycomb graphene aerogel multifunctional polymer composites", Carbon, 93, 659-670. https://doi.org/10.1016/j.carbon.2015.05.102.
- Zhu, C., Han, T.Y.J., Duoss, E.B., Golobic, A.M., Kuntz, J.D. and Spadaccini, C.M. (2015), "Highly compressible 3D periodic graphene aerogel microlattices", Nat. Commun., 6, 1-8. https://doi.org/10.1038/ncomms7962.
- Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.