DOI QR코드

DOI QR Code

Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites

이산화티탄 나노입자 필러가 PET와 PLA 나노복합체의 특성에 미치는 영향

  • Farhoodi, Mehdi (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran) ;
  • Dadashi, Saeed (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran) ;
  • Mousavi, Seyed Mohammad Ali (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran) ;
  • Sotudeh-Gharebagh, Rahmat (School of Chemical Engineering,College of Engineering, University of Tehran) ;
  • Emam-Djomeh, Zahra (Department of Food Science & Technology, Faculty of Agricultural Engineering, University of Tehran) ;
  • Oromiehie, Abdolrasul (Iran Polymer Institute) ;
  • Hemmati, Farkhondeh (Polymer Engineering and Color Technology Department, Amirkabir University of Technology)
  • Received : 2012.05.30
  • Accepted : 2012.08.16
  • Published : 2012.11.25

Abstract

Two types of polymers were tested in this study; poly(ethylene terephthalate) (PET) as a synthetic example and poly(lactic acid) (PLA) as a natural polymer. DSC analyses showed that the use of nanofiller increased the degree of crystallinity ($X_c$) of both PET and PLA polymers, but the effect was more noticeable on PET nanocomposites. The crystallization of PLA and PET nanocomposites occurred at higher temperatures in comparison to neat polymers. According to dynamic mechanical-thermal analysis (DMTA), the damping factor of PET/$TiO_2$ nanoparticles decreased compared to the neat matrix, but for PLA nanocomposites the opposite trend was observed. Results of the mechanical test showed that for both PET and PLA nanocomposites, the most successful toughening effect was observed at 3 wt% loading of $TiO_2$ nanoparticles. SEM micrographs revealed uniform distribution of $TiO_2$ nanoparticles at 1 and 3 wt% loading levels. The results of WAXD spectra explained that the polymorphs of PLA and PET was not affected by $TiO_2$ nanoparticles. UV-visible spectra showed that $TiO_2$ nanocomposite films had high ultraviolet shielding compared to neat polymer, but there was significant reduction in transparency.

Keywords

References

  1. L. Yu, K. Dean, and L. Li, Progr. Polym. Sci., 31, 576 (2006). https://doi.org/10.1016/j.progpolymsci.2006.03.002
  2. L. Yu and L. Chen, Polymeric materials from renewable resources. Biodegradable polymer blends and composites from renewable resources, John Wiley & Sons Inc., pp. 1-15 (2009).
  3. J. Lunt, Polym. Degrad. Stabil., 59, 145 (1998). https://doi.org/10.1016/S0141-3910(97)00148-1
  4. R. P. Singh, J. K. Pandey, D. Rutot, Ph. Degee, and Ph. Dubois, Carbohyd. Res., 338, 1759 (2003). https://doi.org/10.1016/S0008-6215(03)00236-2
  5. M. Rosoff, Nano-surface Chemistry, Marcel Dekker Inc., New York, 2002.
  6. C. Saujanya and S. Radhakrishnan, Polymer, 42, 6723 (2001). https://doi.org/10.1016/S0032-3861(01)00140-9
  7. D. H. Solomon and D. G. Hawthorne, Chemistry of Pigments and Fillers, John Wiley & Sons Inc., New York, 1983.
  8. T. Yamada, L. Hao, K. Tada, S. Konagaya, and G. Li, Mater. Sci., 2, 154 (2006).
  9. L. V. Todorov, C. I. Martins, and J. C. Viana, Solid State Phenomena, 151, 113 (2009). https://doi.org/10.4028/www.scientific.net/SSP.151.113
  10. L. V. Todorov and J. C. Viana, J. Appl. Polym. Sci., 106, 1659 (2007). https://doi.org/10.1002/app.26716
  11. L. Yonghui, Ch. Caihong, L. Jun, and S. S. Xiuzhi, Polymer, 52, 2367 (2011). https://doi.org/10.1016/j.polymer.2011.03.050
  12. L. Xili, L. Xiuqian, S. Zhijie, and Zh. Yufeng, Eur. Polym. J., 44, 2476 (2008). https://doi.org/10.1016/j.eurpolymj.2008.06.002
  13. N. Nakayama and T. Hayashi, Polym. Degrad. Stabil., 92, 1255 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.026
  14. J. W. Rhim, S. I. Hong, and C. S. Ha, Tensile, LWT- Food Science and Technology, 42, 612 (2009). https://doi.org/10.1016/j.lwt.2008.02.015
  15. E. W. Fisher, H. J. Sterzel, and G. Wegner, Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 251, 980 (1973). https://doi.org/10.1007/BF01498927
  16. Y. Y. Sun, Z. Q. Zhang, K. S. Moon, and C. P. Wong, J. Appl. Polym. Sci., 42, 3849 (2004). https://doi.org/10.1002/polb.20251
  17. Y. C. Zhang, J. N. Huang, H. Y. Wu, and Y. P. Qiu, Mater. Sci., 613, 316 (2009).
  18. M. H. Qu, Y. Z. Wang, C. Wang, X. G. Ge, D. Y. Wang, and Q. Zhou, Eur. Polym. J., 41, 2569 (2005). https://doi.org/10.1016/j.eurpolymj.2005.05.013
  19. J. P. He, H. M. Li, X. Y. Wang, and Y. Gao, Eur. Polym. J., 42, 1128 (2006). https://doi.org/10.1016/j.eurpolymj.2005.11.002
  20. T. Wan, L. Chen, Y. C. Chua, and X. Lu, J. Appl. Polym. Sci., 94, 1381 (2004). https://doi.org/10.1002/app.20975
  21. X. Liao, A. Nawaby, and H. E. Naguib, J. Appl. Polym. Sci., 124, 585 (2012). https://doi.org/10.1002/app.34994
  22. S. Pattanawanidchai, P. Saeoui, and C. Sirisinha, J. Appl. Polym. Sci., 96, 2218 (2005). https://doi.org/10.1002/app.21697
  23. P. C. Chiang, W. T. Whang, and M. H. Tsai, Thin Soild Films, 447, 359 (2004). https://doi.org/10.1016/S0040-6090(03)01081-2
  24. M. H. Tsai, S. J. Liu, and P. C. Chiang, Thin Solid Films, 515, 1126 (2006). https://doi.org/10.1016/j.tsf.2006.07.092
  25. Y. J. Mergler and R. P. Schaake, J. Appl. Polym. Sci., 92, 2689 (2004). https://doi.org/10.1002/app.20251
  26. L. Sun, R. F. Gibson, F. Godaninejad, and J. Suhr, Compos. Sci. Technol., 69, 2392 (2009). https://doi.org/10.1016/j.compscitech.2009.06.020
  27. C. Espejo, A. Arribas, F. Monzo, and P. P. Diez, J. Plast. Film Sheet., DOI: 10.1177/8756087912439058 (2012).
  28. M. S. Sunay, O. Pekcan, and S. Ugur, J. Nanomater., DOI: 10.1155/2012/524343 (2012).

Cited by

  1. Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning vol.73, pp.11, 2016, https://doi.org/10.1007/s00289-016-1635-1
  2. Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation vol.8, pp.1, 2016, https://doi.org/10.1007/s12393-015-9114-2
  3. Preparation PET Hybrided Materials by In Situ Polymerization for Delustered Fibers vol.898, pp.1662-9752, 2017, https://doi.org/10.4028/www.scientific.net/MSF.898.2166
  4. An Experimental Study on the Thermal Properties and Electrical Properties of Polylactide Doped with Nano Aluminium Oxide and Nano Cupric Oxide vol.2, pp.4, 2012, https://doi.org/10.1007/s41403-017-0030-z
  5. Poly(Lactic Acid)/ZnO Bionanocomposite Films with Positively Charged ZnO as Potential Antimicrobial Food Packaging Materials vol.11, pp.9, 2019, https://doi.org/10.3390/polym11091427
  6. Effects of micro‐nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide vol.41, pp.2, 2012, https://doi.org/10.1002/pc.25391
  7. 3D Printing of Polymer Waste for Improving People’s Awareness about Marine Litter vol.12, pp.8, 2012, https://doi.org/10.3390/polym12081738
  8. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites vol.13, pp.12, 2012, https://doi.org/10.3390/polym13122017
  9. Golden Glittering Biocomposite Fibers from Poly(lactic acid) and Nanosilver-Coated Titanium Dioxide with Unique Properties; Antimicrobial, Photocatalytic, and Ion-Sensing Properties vol.6, pp.25, 2012, https://doi.org/10.1021/acsomega.1c00657
  10. Comparison and characterization of polyacrylonitrile, polyvinylidene fluoride, and polyvinyl chloride composites functionalized with ferric hydroxide for removing arsenic from water vol.24, pp.None, 2012, https://doi.org/10.1016/j.eti.2021.101927