• Title/Summary/Keyword: Nanoscale complementary metal-oxide-semiconductor

Search Result 7, Processing Time 0.018 seconds

Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.93-105
    • /
    • 2010
  • Complementary metal-oxide-semiconductor (CMOS) technology scaling has been a main key for continuous progress in silicon-based semiconductor industry over the past three decades. However, as the technology scaling enters nanometer regime, CMOS devices are facing many serious problems such as increased leakage currents, difficulty on increase of on-current, large parameter variations, low reliability and yield, increase in manufacturing cost, and etc. To sustain the historical improvements, various innovations in CMOS materials and device structures have been researched and introduced. In parallel with those researches, various new nanoelectronic devices, so called "Beyond CMOS Devices," are actively being investigated and researched to supplement or possibly replace ultimately scaled conventional CMOS devices. While those nanoelectronic devices offer ultra-high density system integration, they are still in a premature stage having many critical issues such as high variations and deteriorated reliability. The practical realization of those promising technologies requires extensive researches from device to system architecture level. In this paper, the current researches and challenges on nanoelectronics are reviewed and critical tasks are summarized from device level to circuit design/CAD domain to better prepare for the forthcoming technologies.

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.175-188
    • /
    • 2011
  • As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.

Single-bit digital comparator circuit design using quantum-dot cellular automata nanotechnology

  • Vijay Kumar Sharma
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.534-542
    • /
    • 2023
  • The large amount of secondary effects in complementary metal-oxide-semiconductor technology limits its application in the ultra-nanoscale region. Circuit designers explore a new technology for the ultra-nanoscale region, which is the quantum-dot cellular automata (QCA). Low-energy dissipation, high speed, and area efficiency are the key features of the QCA technology. This research proposes a novel, low-complexity, QCA-based one-bit digital comparator circuit for the ultra-nanoscale region. The performance of the proposed comparator circuit is presented in detail in this paper and compared with that of existing designs. The proposed QCA structure for the comparator circuit only consists of 19 QCA cells with two clock phases. QCA Designer-E and QCA Pro tools are applied to estimate the total energy dissipation. The proposed comparator saves 24.00% QCA cells, 25.00% cell area, 37.50% layout cost, and 78.11% energy dissipation compared with the best reported similar design.

Efficient Design of BCD-EXCESS 3 Code Converter Using Quantum-Dot Cellular Automata (QCA를 이용한 효율적인 BCD-3초과 코드 변환기 설계)

  • You, Young-Won;Jeon, Jun-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.700-704
    • /
    • 2013
  • Quantum-dot cellular automata(QCA) is a new technology and it is an one of the alternative high performance over existing complementary metal-oxide semi-conductor(CMOS). QCA is nanoscale device and ultra-low power consumption compared with transistor-based technologies, and various circuits using QCA technology have been proposed. Binary-coded decimal(BCD), which represents decimal digits in binary, is mainly used in electronic circuits and Microprocessor, and it is comfortable in conversion operation but many data loss. In this paper, we present an BCD-EXCESS 3 Code converter which can be efficiently used for subtraction and half adjust. The proposed scheme has efficiently designed considering space and time complexities and minimization of noise, and it has been simulated and confirmed.

Area-Power Trade-Offs for Flexible Filtering in Green Radios

  • Michael, Navin;Moy, Christophe;Vinod, Achutavarrier Prasad;Palicot, Jacques
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.158-167
    • /
    • 2010
  • The energy efficiency of wireless infrastructure and terminals has been drawing renewed attention of late, due to their significant environmental cost. Emerging green communication paradigms such as cognitive radios, are also imposing the additional requirement of flexibility. This dual requirement of energy efficiency and flexibility poses new design challenges for implementing radio functional blocks. This paper focuses on the area vs. power trade-offs for the type of channel filters that are required in the digital frontend of a flexible, energy-efficient radio. In traditional CMOS circuits, increased area was traded for reduced dynamic power consumption. With leakage power emerging as the dominant mode of power consumption in nanoscale CMOS, these trade-offs must be revisited due to the strong correlation between area and leakage power. The current work discusses how the increased timing slacks obtained by increasing the parallelism can be exploited for overall power reduction even in nanoscale circuits. In this context the paper introduces the notion of 'area efficiency' and a metric for evaluating it. The proposed metric has also been used to compare the area efficiencies of different classes of time-shared filters.

Method of manufacturing and characteristics of a functional AFM cantilever (기능성 원자간력 현미경 캔틸레버 제조 방법과 특성)

  • Suh Moon Suhk;Lee Churl Seung;Lee Kyoung Il;Shin Jin-Koog
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.56-58
    • /
    • 2005
  • To illustrate an application of the field effect transistor (FET) structure, this study suggests a new cantilever, using atomic force microscopy (AFM), for sensing surface potentials in nanoscale. A combination of the micro-electromechanical system technique for surface and bulk and the complementary metal oxide semiconductor process has been employed to fabricate the cantilever with a silicon-on-insulator (SOI) wafer. After the implantation of a high-ion dose, thermal annealing was used to control the channel length between the source and the drain. The basic principle of this cantilever is similar to the FET without a gate electrode.

  • PDF

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.