DOI QR코드

DOI QR Code

Efficient Design of BCD-EXCESS 3 Code Converter Using Quantum-Dot Cellular Automata

QCA를 이용한 효율적인 BCD-3초과 코드 변환기 설계

  • You, Young-Won (Department of Computer Engineering, Kumoh National Institute of Technology) ;
  • Jeon, Jun-Cheol (Department of Computer Engineering, Kumoh National Institute of Technology)
  • 유영원 (금오공과대학교 컴퓨터공학과) ;
  • 전준철 (금오공과대학교 컴퓨터공학과)
  • Received : 2013.10.22
  • Accepted : 2013.12.30
  • Published : 2013.12.30

Abstract

Quantum-dot cellular automata(QCA) is a new technology and it is an one of the alternative high performance over existing complementary metal-oxide semi-conductor(CMOS). QCA is nanoscale device and ultra-low power consumption compared with transistor-based technologies, and various circuits using QCA technology have been proposed. Binary-coded decimal(BCD), which represents decimal digits in binary, is mainly used in electronic circuits and Microprocessor, and it is comfortable in conversion operation but many data loss. In this paper, we present an BCD-EXCESS 3 Code converter which can be efficiently used for subtraction and half adjust. The proposed scheme has efficiently designed considering space and time complexities and minimization of noise, and it has been simulated and confirmed.

양자 셀룰라 오토마타(QCA)는 CMOS의 기술을 상속받을 차세대 나노 전자 소자 중 하나이다. QCA는 원자규모 및 초저전력화로 이목이 집중되고 있으며 다양한 QCA 회로들이 제안되었다. 십진 출력을 요하는 전자회로와 마이크로프로세서에서 주로 사용되는 이진화 십진법(BCD)은 연산을 위한 변환은 편하지만 데이터 낭비가 심하다. 본 논문에서는 QCA 회로에서 감산 및 반올림에 효과적으로 이용될 수 있는 BCD-3초과 코드를 제안한다. 제안된 구조는 잡음을 최소화하고 공간 및 시간 복잡도를 고려하여 효율적으로 설계되었으며 시뮬레이션을 통해 검증하였다.

Keywords

References

  1. Wikipedia. Quantum dot cellular automaton, http://enwikipedia.org/wiki/Quantum_dot_cellular_automata
  2. V. A. Mardiris, I. G. Karafyllidis, "Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers," International Journal of Circuit Theory and Applications, vol. 8, no. 38, pp. 771-785, 2010.
  3. X. Yang, L. Cai, X. Zhao, N. Zhang, "Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study," Microelectronics Journal, vol. 1, no. 41, pp. 56-63, 2010.
  4. A. S. Shamsabadi, B. S. Ghahfarokhi, K. Zamanifar, N. Movahedinia, "Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study," Journal of Systems Architecture, vol. 55, no 3, pp. 180-187, 2009. https://doi.org/10.1016/j.sysarc.2008.11.001
  5. H. Aghababa, M. H. Yazdinejad, A. Afzali, B. Forouzandeh. "Simplified quantum-dot cellular automata implementation of counters," 7th International Caribbean Conference on Devices, Circuits and Systems, pp. 1-4, 2008.
  6. M. A. Dehkordi, A. S. Shamsabadi, B. S. Ghahfarokhi, A. Vafaei, "Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata," Microelectronics Journal, vol 42, no 5, pp. 701-708, 2011. https://doi.org/10.1016/j.mejo.2011.02.006
  7. D. Y. Park, "Realization of Multiplie-Control Toffoli gate based on Mulitiple-Valued Quantum Logic," Journal of The Korea Navigation Institute, vol. 16, no. 1, pp. 62-69, 2012. https://doi.org/10.12673/jkoni.2012.16.1.062
  8. Wikipedia, Binary-coded decimal http://en.wikipedia.org/wiki/Binary-coded_decimal
  9. Wikipedia, Excess-3 http://en.wikipedia.org/wiki/Excess-3
  10. H. Cho, E. E. Swartzlander Jr., "Adder and Multiplier Design in Quantum-Dot Cellular Automata," IEEE Transactions on Computers, vol. 58, no. 6, pp. 721-727, 2009. https://doi.org/10.1109/TC.2009.21
  11. QCADesigner, http://www.qcadesigner.ca