Area-Power Trade-Offs for Flexible Filtering in Green Radios

  • Michael, Navin (School of Computer Engineering, Nanyang Technological University) ;
  • Moy, Christophe (Ecole Superieure d'Electricite (SUPELEC)/Institut d'Electronique et de Telecommunications de Rennes (IETR)) ;
  • Vinod, Achutavarrier Prasad (School of Computer Engineering, Nanyang Technological University) ;
  • Palicot, Jacques (Ecole Superieure d'Electricite (SUPELEC)/Institut d'Electronique et de Telecommunications de Rennes (IETR))
  • Received : 2009.10.01
  • Published : 2010.04.30

Abstract

The energy efficiency of wireless infrastructure and terminals has been drawing renewed attention of late, due to their significant environmental cost. Emerging green communication paradigms such as cognitive radios, are also imposing the additional requirement of flexibility. This dual requirement of energy efficiency and flexibility poses new design challenges for implementing radio functional blocks. This paper focuses on the area vs. power trade-offs for the type of channel filters that are required in the digital frontend of a flexible, energy-efficient radio. In traditional CMOS circuits, increased area was traded for reduced dynamic power consumption. With leakage power emerging as the dominant mode of power consumption in nanoscale CMOS, these trade-offs must be revisited due to the strong correlation between area and leakage power. The current work discusses how the increased timing slacks obtained by increasing the parallelism can be exploited for overall power reduction even in nanoscale circuits. In this context the paper introduces the notion of 'area efficiency' and a metric for evaluating it. The proposed metric has also been used to compare the area efficiencies of different classes of time-shared filters.

Keywords

References

  1. A. F. Pele, (2009, June 25). Leti works on green mobile networks, EE Times Europe. [Online]. Available: http://www.eetimes.eu/218101321
  2. S. Armour, T O. Farrell, S. F1ether, A. Jeffries, D. Lister, S. Mclaughlin, J. Thompson, and P. Grant, (2009, June 12). Green radio: Sustainable wireless networks ,IET [Online]. Available: http://kn.theiet.org/communications/green-radio-article.cfm
  3. M. Stutz, M. F. Emmenegger, R. Frischknecht, M. Guggisberg, R. Witschi, and T. Otto, "Life cycle assessment of the mobile communication system UMTS: Towards eco-efficient systems," Int. J. Life Cycle Assessment, vol. 11, no.4, pp.265-276, 2006. https://doi.org/10.1065/lca2004.12.193
  4. A. Rayapura, "Wireless waste. The challenge of cell phone and battery collection," Inf. Report, 2005.
  5. J. M. Rabaey, "Silicon platforms for the next generation wireless systems -What role does reconfigurable hardware play?" in Proc. Springer-Verlag, 2000, pp.277-285.
  6. S. Haykin, "Cognitive radio: Brain-empowered wireless communications," IEEE J. Sel. Areas Commun., vol. 23, pp. 201-220, Feb. 2005.
  7. R. Gedge, "Symbiotic networks;' BT Technol. J., vol. 21, pp. 67-73, 2003.
  8. A. He, S. Srikanteswura .J. H. Reed, C. Xuetao, W. H. Tranter, K. K. Bae, and M. Sajadieh, "Minimizing energy consumption using cognitive radio:' in Proc. IEEE Performance, Comput. and Commun. Conf, Dec. 2008, pp. 372-377.
  9. J. Palicot, "Cognitive radio: An enabling technology for the green radio communications concept," in Proc. Int. Wireless Commun. and Mobile Comput. Conf, June 2009, pp. 21-24.
  10. N. S. Kim, T. Austin, D. Baauw, K. Flautner, J.S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan, "Leakage current: Moore's law meets static power," Computer, vol. 36, no. 12, pp. 68-75, Dec. 2003. https://doi.org/10.1109/MC.2003.1250885
  11. J. M. Rabaey, "Wireless beyond the third generation-facing the energy challenge," in Proc. Int. Symp. Low Power Electron. and Design, Aug. 2001, pp. 1-3.
  12. M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, "Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 15, no. 2, pp. 151-165, 1996. https://doi.org/10.1109/43.486662
  13. A. G. Dempster and M. D. Macleod, "Use of minimum-adder multiplier blocks in FIR digital filters:' IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 42, no. 9, pp. 569-577, Sept. 1995. https://doi.org/10.1109/82.466647
  14. C. H. Wang, A. T. Erdogan, and T. Arslan, "High throughput and low power FIR filtering IP cores," in Proc. IEEE Int. SOC Conf, Sept. 2004, pp. 127-130.
  15. C. Xu, C.-Y, Wang, and K. K. Parhi, "Order-configurable programmable power efficient FIR filters," in Proc. Int. Conf. High Performance Comput., Dec. 1996, pp. 357-361.
  16. M. Lundstorm, "Moore's law forever," Science, vol. 299. no. 5604, pp. 210-211, 2003. https://doi.org/10.1126/science.1079567
  17. B. Nikolic, "Design in the power-limited scaling regime," IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 71-83, Jan. 2008. https://doi.org/10.1109/TED.2007.911350
  18. K. Roy, S. Mukhopadhyay, and H. M.-Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," Proc. IEEE, vol. 91. no. 2, pp. 305-327, Feb. 2003. https://doi.org/10.1109/JPROC.2002.808156
  19. H. Jeon and V, B. Kim, "A novel technique to minimize standby leakage power in nanoscale CMOS VLSI," in Proc. IEEE Int. Instrumentation and Measurement Technol. Conf, May 2009, pp. 1372-1375.
  20. M. Drazdziulis, "A gate leakage reduction strategy for future CMOS circuits," in Proc. Eur. Solid-State Circuits, Conf, Sept. 2003, pp. 317-320.
  21. S. P. Mohanty, V. Mukherjee, and R. Velagapudi, "Analytical modeling and reduction of direct tunneling current during behavioral synthesis of nanometer CMOS circnits," in Proc. ACM/IEEE IWLS, 2005, pp. 249-256.
  22. E. Kougianos and S. P. Mohanty. "Impact of gate-oxide tunneling on mixed-signal design and simulation of a nano-CMOS VCO," J. Microelectron., vol. 40, no. 1, pp. 95-103, 2009. https://doi.org/10.1016/j.mejo.2008.08.017
  23. A. P. Chandrakasan and R. W. Brodersen, Low power CMOS digital design, Norwell, MA: Kluwer, 1996.
  24. K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl, "A physical alpha-power law MOSFET model," in Proc. Int. Symp. Low Power Electron. and Design, 1999, pp. 218-222.
  25. N. Sirisantana, L. Wei, and K. Roy, "High-performance low-power CMOS circuits using multiple channel length and multiple oxide thickness;' in Proc. IEEE Int. Conf Computer Design, 2000, p. 227.
  26. A. Keshavarzi, S. Ma, S. Narendra, B. BloeeheJ, K. Mistry, T. Ghani, S. Borkar, and V. De, "Effectiveness of reverse body bias for leakage control in scaled dual Vt CMOS IC," in Proc. Int. Symp. Low Power Electron. and Design, 2001.
  27. A. Keshavarzi, S. Narendra, B. Bloeehel, S. Borkar, and V. De, "Forward body bias for microprocessors in 130nm technology generation and beyond," IEEE J. Solid-State Circuits, vol.38, pp. 696-701, 2003. https://doi.org/10.1109/JSSC.2003.810054
  28. M. Miyazaki, J. Kao, and A. P. Chandrakasan, "A 175mV multiply-accumulate unit using an adaptive supply voltage and body bias architecture;' in Proc. IEEE Int. Solid-State Circuits Conf, 2002, pp. 58-59. 27
  29. N. Michael, A. P. Vinod, C. Moy, and J. Palicot, "Design of low power multimode time-shared filters," in Proc. Int. Conf Info., Commun. and Signal Process., Dec. 2009, pp. 1-5.
  30. A. Parker and K. K. Parhi, "Low area/power parallel FIR digital filter implementations," J. VLSI Signal Process., vol. 17, no. 1, pp. 75-92, Sept. 1997. https://doi.org/10.1023/A:1007901117408
  31. Z. J. Mou and P. Duhamel, "Short-length FIR fillers and their use in fast nonrecursive filtering," IEEE Trans. Signal Process., vol. 39, pp. 1322-1332, June 1991. https://doi.org/10.1109/78.136539