DOI QR코드

DOI QR Code

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics

플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰

  • Kim, Se Hyun (Technology Licensing Office, Institute for Research & Industry Cooperation, Pusan National University) ;
  • Park, Keun Hyeong (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Eun Been (School of Materials Science and Engineering, Pusan National University) ;
  • Yu, Geun Taek (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Dong Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Yang, Kun (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Ju Yong (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Min Hyuk (School of Materials Science and Engineering, Pusan National University)
  • 김세현 (부산대학교 산학협력단 기술사업부) ;
  • 박근형 (부산대학교 재료공학부) ;
  • 이은빈 (부산대학교 재료공학부) ;
  • 유근택 (부산대학교 재료공학부) ;
  • 이동현 (부산대학교 재료공학부) ;
  • 양건 (부산대학교 재료공학부) ;
  • 박주용 (부산대학교 재료공학부) ;
  • 박민혁 (부산대학교 재료공학부)
  • Received : 2020.12.16
  • Accepted : 2020.12.30
  • Published : 2020.12.31

Abstract

Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Boscke T S, Muller J, Brauhaus D, Schroder U and Bottger U, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903. https://doi.org/10.1063/1.3634052
  2. Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Mueller J, Kersch A, Schroeder U and Mikolajick T, Ferroelectricity and antiferroelectricity of doped thin HfO2-based films, Adv. Mater. 27 (2015) 1811-31. https://doi.org/10.1002/adma.201404531
  3. Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S, Review and perspective on ferroelectric HfO2-based thin films for memory applications, MRS Commun. 8 (2018) 795-808. https://doi.org/10.1557/mrc.2018.175
  4. Mikolajick T, Slesazeck S, Park M H and Schroeder U, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors, MRS Bull. 43 (2018) 340-6. https://doi.org/10.1557/mrs.2018.92
  5. Lee H-J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U and Lee J H, Scale-free ferroelectricity induced by flat phonon bands in HfO2, Science 369 (2020) 1343-7. https://doi.org/10.1126/science.aba0067
  6. Lee K, Lee H J, Lee T Y, Lim H H, Song M S, Yoo H K, Suh D I, Lee J G, Zhu Z, Yoon A, MacDonald M R, Lei X, Park K, Park J, Lee J H and Chae S C, Stable Subloop Behavior in Ferroelectric Si-Doped HfO2, ACS Appl. Mater. Interfaces 11 (2019) 38929-36. https://doi.org/10.1021/acsami.9b12878
  7. Mulaosmanovic H, Ocker J, Muller S, Schroeder U, Muller J, Polakowski P, Flachowsky S, van Bentum R, Mikolajick T and Slesazeck S, Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors, ACS appl. mater. interfaces 9 (2017) 3792-8. https://doi.org/10.1021/acsami.6b13866
  8. Kim M-K and Lee J-S, Ferroelectric analog synaptic transistors, Nano lett. 19 (2019) 2044-50. https://doi.org/10.1021/acs.nanolett.9b00180
  9. Batra R, Huan T D, Rossetti Jr G A and Ramprasad R, Dopants promoting ferroelectricity in Hafnia: Insights from A comprehensive chemical space exploration, Chem. Mat. 29 (2017) 9102-9. https://doi.org/10.1021/acs.chemmater.7b02835
  10. Oh S, Hwang H and Yoo I, Ferroelectric materials for neuromorphic computing, APL Mater. 7 (2019) 091109. https://doi.org/10.1063/1.5108562
  11. McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J & Salahuddin S, Enhanced ferroelectricity in ultrathin films grown directly on silicon, Nature 580 (2020) 478-482. https://doi.org/10.1038/s41586-020-2208-x
  12. Lee H J, Lee M S, Lee K J, Jo J H, Yang H M, Kim Y Y, Chae S C, Waghmare U, Lee J H, Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369 (2020) 1343-1347. https://doi.org/10.1126/science.aba0067
  13. Park M H, Lee D H, Yang K, Park J-Y, Yu G T, Park H W, Materano M, Mittmann T, Lomenzo P D and Mikolajick T, Review of Defect Chemistry in Fluorite-structure Ferroelectrics for future electronic devices, J. Mater. Chem. C (2020) 10526-10550.
  14. Merz W J, Domain formation and domain wall motions in ferroelectric batio3 single crystals, Phys. Rev. 95 (1954) 690. https://doi.org/10.1103/PhysRev.95.690
  15. Orihara H, Hashimoto S and Ishibashi Y, A theory of DE hysteresis loop based on the Avrami model, J. Phys. Soc. Jpn. 63 (1994) 1031-5. https://doi.org/10.1143/JPSJ.63.1031
  16. Kolmogorov A N, On the statistical theory of the crystallization of metals, Bull. Acad. Sci. USSR, Math. Ser 1 (1937) 355-9.
  17. Avrami M, Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys. 8 (1940) 212-24. https://doi.org/10.1063/1.1750631
  18. Shur V, Rumyantsev E and Makarov S, Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics, J. Appl. Phys. 84 (1998) 445-51. https://doi.org/10.1063/1.368047
  19. Shur V Y and Rumyantsev E L, Kinetics of ferroelectric domain structure during switching: Theory and experiment, Ferroelectrics 151 (1994) 171-80. https://doi.org/10.1080/00150199408244739
  20. Shur V Y and Rumyantsev E L, Crystal growth and domain structure evolution, Ferroelectrics 142 (1993) 1-7. https://doi.org/10.1080/00150199308237878
  21. Guo E J, Dorr K and Herklotz A, Strain controlled ferroelectric switching time of BiFeO3 capacitors, Appl. Phys. Lett. 101 (2012) 242908. https://doi.org/10.1063/1.4772006
  22. Jo J Y, Yang S M, Ki m T H, Lee H N, Yoon J G, Park S, Jo Y, Jung M H and Noh T W, Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films, Phys. Rev. Lett. 102 (2009) 045701. https://doi.org/10.1103/PhysRevLett.102.045701
  23. So Y W, Ki m D J, Noh T W, Yoon J-G and Song T K, Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films, Appl. Phys. Lett. 86 (2005) 092905. https://doi.org/10.1063/1.1870126
  24. Tagantsev A K, Stolichnov I, Setter N, Cross J S and Tsukada M, Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films, Phys. Rev.B 66 (2002) 214109. https://doi.org/10.1103/PhysRevB.66.214109
  25. Mueller S, Summerfelt S R, Muller J, Schroeder U and Mikolajick T, Ten-Nanometer Ferroelectric Si:HfO2 Films for Next-Generation FRAM Capacitors, IEEE Electron Device Lett. 33 (2012) 1300-2. https://doi.org/10.1109/LED.2012.2204856
  26. Lee T Y, Lee K, Lim H H, Song M S, Yang S M, Yoo H K, Suh D I, Zhu Z, Yoon A, MacDonald M R, Lei X, Jeong H Y, Lee D, Park K, Park J and Chae S C, Ferroelectric Polarization-Switching Dynamics and Wake-Up Effect in Si-Doped HfO2, ACS Appl. Mater. Interfaces 11 (2019) 3142-9. https://doi.org/10.1021/acsami.8b11681
  27. Hyun S D, Park H W, Kim Y J, Park M H, Lee Y H, Kim H J, Kwon Y J, Moon T, Kim K D, Lee Y B, Kim B S and Hwang C S, Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf0.5Zr0.5O2 Thin Films, ACS Appl. Mater. Interfaces 10 (2018) 35374-84. https://doi.org/10.1021/acsami.8b13173
  28. Pesic M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T, Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors, Adv. Funct. Mater 26 (2016) 4601-12. https://doi.org/10.1002/adfm.201600590
  29. Zhou D, Xu J, Li Q, Guan Y, Cao F, Dong X, Muller J, Schenk T and Schroder U, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films, Appl. Phys. Lett. 103 (2013) 192904. https://doi.org/10.1063/1.4829064
  30. Chen Y-C, Lin Q and Chu Y, Domain growth dynamics in single-domain-like BiFeO3 thin films, Appl. Phys. Lett. 94 (2009) 122908. https://doi.org/10.1063/1.3109779
  31. Son J Y, Park C S, Kim S K and Shin Y H, Writing ferroelectric domain bits on the PbZr0.48Ti0.52O3 thin film, J. Appl. Phys. 104 (2008) 064101. https://doi.org/10.1063/1.2978220
  32. Kim Y, Kim W, Choi H, Hong S, Ko H, Lee H and No K, Nanoscale domain growth dynamics of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin films, Appl. Phys. Lett. 96 (2010) 012908. https://doi.org/10.1063/1.3290247
  33. Zhukov S, Genenko Y A and von Seggern H, Experimental and theoretical investigation on polarization reversal in unfatigued lead-zirconate-titanate ceramic, J. Appl. Phys. 108 (2010) 014106. https://doi.org/10.1063/1.3380844
  34. Jiang A Q, Lee H J, Hwang C S and Scott J F, Sub-Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments, Adv. Funct. Mater 22 (2012) 192-9. https://doi.org/10.1002/adfm.201101521
  35. Materlik R, Kunneth C and Kersch A, The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model, J. Appl. Phys. 117 (2015) 134109. https://doi.org/10.1063/1.4916707
  36. Park M H, Lee Y H, Kim H J, Schenk T, Lee W, Do Ki m K, Fengler F P, Mi kolaji ck T, Schroeder U and Hwang C S, Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment, Nanoscale 9 (2017) 9973-86. https://doi.org/10.1039/C7NR02121F
  37. Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T and Seong Hwang C, Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature, Appl. Phys. Lett. 102 (2013) 242905. https://doi.org/10.1063/1.4811483
  38. Park M H and Hwang C S, Fluorite-structure antiferroelectrics, Rep Prog Phys 82 (2019) 124502. https://doi.org/10.1088/1361-6633/ab49d6
  39. Park M H, Schenk T, Hoffmann M, Knebel S, Gartner J, Mikolajick T and Schroeder U, Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications, Nano Energy 36 (2017) 381-9. https://doi.org/10.1016/j.nanoen.2017.04.052
  40. Park M H, Kim H J, Kim Y J, Moon T, Kim K D and Hwang C S, Thin HfxZr1-xO2 fi lms: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability, Adv. Energy Mater. 4 (2014) 1400610. https://doi.org/10.1002/aenm.201400610
  41. Park M H, Ki m H J, Ki m Y J, Moon T, Ki m K D, Lee Y H, Hyun S D and Hwang C S, Giant Negative Electrocaloric Effects of Hf0.5Zr0.5O2 Thin Films, Adv. Mater. 28 (2016) 7956-61. https://doi.org/10.1002/adma.201602787
  42. Hoffmann M, Schroeder U, Kunneth C, Kersch A, Starschich S, Bottger U and Mikolajick T, Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors, Nano Energy 18 (2015) 154-64. https://doi.org/10.1016/j.nanoen.2015.10.005
  43. Lomenzo P D, Slesazeck S, Hoffmann M, Mikolajick T, Schroeder U and Max B, Ferroelectric Hf1-xZrxO2 memories: device reliability and depolarization fields. NVMTS IEEE (2019) pp 1-8.
  44. Jo J, Han H, Yoon J-G, Song T, Kim S-H and Noh T, Domain switching kinetics in disordered ferroelectric thin films, Phys. Rev. lett. 99 (2007) 267602. https://doi.org/10.1103/PhysRevLett.99.267602
  45. Mulaosmanovic H, Chicca E, Bertele M, Mikolajick T and Slesazeck S, Mimicking biological neurons with a nanoscale ferroelectric transistor, Nanoscale 10 (2018) 21755-63. https://doi.org/10.1039/c8nr07135g
  46. Landauer R, Electrostatic considerations in BaTiO3 domain formation during polarization reversal, J. Appl. Phys. 28 (1957) 227-34. https://doi.org/10.1063/1.1722712
  47. Du X and Chen I-W, Frequency spectra of fatigue of PZT and other ferroelectric thin films, MRS Online Proceedings Library Archive 493 (1997) 493. https://doi.org/10.1557/PROC-493-493