Acknowledgement
이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.
References
- Boscke T S, Muller J, Brauhaus D, Schroder U and Bottger U, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903. https://doi.org/10.1063/1.3634052
- Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Mueller J, Kersch A, Schroeder U and Mikolajick T, Ferroelectricity and antiferroelectricity of doped thin HfO2-based films, Adv. Mater. 27 (2015) 1811-31. https://doi.org/10.1002/adma.201404531
- Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S, Review and perspective on ferroelectric HfO2-based thin films for memory applications, MRS Commun. 8 (2018) 795-808. https://doi.org/10.1557/mrc.2018.175
- Mikolajick T, Slesazeck S, Park M H and Schroeder U, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors, MRS Bull. 43 (2018) 340-6. https://doi.org/10.1557/mrs.2018.92
- Lee H-J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U and Lee J H, Scale-free ferroelectricity induced by flat phonon bands in HfO2, Science 369 (2020) 1343-7. https://doi.org/10.1126/science.aba0067
- Lee K, Lee H J, Lee T Y, Lim H H, Song M S, Yoo H K, Suh D I, Lee J G, Zhu Z, Yoon A, MacDonald M R, Lei X, Park K, Park J, Lee J H and Chae S C, Stable Subloop Behavior in Ferroelectric Si-Doped HfO2, ACS Appl. Mater. Interfaces 11 (2019) 38929-36. https://doi.org/10.1021/acsami.9b12878
- Mulaosmanovic H, Ocker J, Muller S, Schroeder U, Muller J, Polakowski P, Flachowsky S, van Bentum R, Mikolajick T and Slesazeck S, Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors, ACS appl. mater. interfaces 9 (2017) 3792-8. https://doi.org/10.1021/acsami.6b13866
- Kim M-K and Lee J-S, Ferroelectric analog synaptic transistors, Nano lett. 19 (2019) 2044-50. https://doi.org/10.1021/acs.nanolett.9b00180
- Batra R, Huan T D, Rossetti Jr G A and Ramprasad R, Dopants promoting ferroelectricity in Hafnia: Insights from A comprehensive chemical space exploration, Chem. Mat. 29 (2017) 9102-9. https://doi.org/10.1021/acs.chemmater.7b02835
- Oh S, Hwang H and Yoo I, Ferroelectric materials for neuromorphic computing, APL Mater. 7 (2019) 091109. https://doi.org/10.1063/1.5108562
- McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J & Salahuddin S, Enhanced ferroelectricity in ultrathin films grown directly on silicon, Nature 580 (2020) 478-482. https://doi.org/10.1038/s41586-020-2208-x
- Lee H J, Lee M S, Lee K J, Jo J H, Yang H M, Kim Y Y, Chae S C, Waghmare U, Lee J H, Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369 (2020) 1343-1347. https://doi.org/10.1126/science.aba0067
- Park M H, Lee D H, Yang K, Park J-Y, Yu G T, Park H W, Materano M, Mittmann T, Lomenzo P D and Mikolajick T, Review of Defect Chemistry in Fluorite-structure Ferroelectrics for future electronic devices, J. Mater. Chem. C (2020) 10526-10550.
- Merz W J, Domain formation and domain wall motions in ferroelectric batio3 single crystals, Phys. Rev. 95 (1954) 690. https://doi.org/10.1103/PhysRev.95.690
- Orihara H, Hashimoto S and Ishibashi Y, A theory of DE hysteresis loop based on the Avrami model, J. Phys. Soc. Jpn. 63 (1994) 1031-5. https://doi.org/10.1143/JPSJ.63.1031
- Kolmogorov A N, On the statistical theory of the crystallization of metals, Bull. Acad. Sci. USSR, Math. Ser 1 (1937) 355-9.
- Avrami M, Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys. 8 (1940) 212-24. https://doi.org/10.1063/1.1750631
- Shur V, Rumyantsev E and Makarov S, Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics, J. Appl. Phys. 84 (1998) 445-51. https://doi.org/10.1063/1.368047
- Shur V Y and Rumyantsev E L, Kinetics of ferroelectric domain structure during switching: Theory and experiment, Ferroelectrics 151 (1994) 171-80. https://doi.org/10.1080/00150199408244739
- Shur V Y and Rumyantsev E L, Crystal growth and domain structure evolution, Ferroelectrics 142 (1993) 1-7. https://doi.org/10.1080/00150199308237878
- Guo E J, Dorr K and Herklotz A, Strain controlled ferroelectric switching time of BiFeO3 capacitors, Appl. Phys. Lett. 101 (2012) 242908. https://doi.org/10.1063/1.4772006
- Jo J Y, Yang S M, Ki m T H, Lee H N, Yoon J G, Park S, Jo Y, Jung M H and Noh T W, Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films, Phys. Rev. Lett. 102 (2009) 045701. https://doi.org/10.1103/PhysRevLett.102.045701
- So Y W, Ki m D J, Noh T W, Yoon J-G and Song T K, Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films, Appl. Phys. Lett. 86 (2005) 092905. https://doi.org/10.1063/1.1870126
- Tagantsev A K, Stolichnov I, Setter N, Cross J S and Tsukada M, Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films, Phys. Rev.B 66 (2002) 214109. https://doi.org/10.1103/PhysRevB.66.214109
- Mueller S, Summerfelt S R, Muller J, Schroeder U and Mikolajick T, Ten-Nanometer Ferroelectric Si:HfO2 Films for Next-Generation FRAM Capacitors, IEEE Electron Device Lett. 33 (2012) 1300-2. https://doi.org/10.1109/LED.2012.2204856
- Lee T Y, Lee K, Lim H H, Song M S, Yang S M, Yoo H K, Suh D I, Zhu Z, Yoon A, MacDonald M R, Lei X, Jeong H Y, Lee D, Park K, Park J and Chae S C, Ferroelectric Polarization-Switching Dynamics and Wake-Up Effect in Si-Doped HfO2, ACS Appl. Mater. Interfaces 11 (2019) 3142-9. https://doi.org/10.1021/acsami.8b11681
- Hyun S D, Park H W, Kim Y J, Park M H, Lee Y H, Kim H J, Kwon Y J, Moon T, Kim K D, Lee Y B, Kim B S and Hwang C S, Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf0.5Zr0.5O2 Thin Films, ACS Appl. Mater. Interfaces 10 (2018) 35374-84. https://doi.org/10.1021/acsami.8b13173
- Pesic M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T, Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors, Adv. Funct. Mater 26 (2016) 4601-12. https://doi.org/10.1002/adfm.201600590
- Zhou D, Xu J, Li Q, Guan Y, Cao F, Dong X, Muller J, Schenk T and Schroder U, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films, Appl. Phys. Lett. 103 (2013) 192904. https://doi.org/10.1063/1.4829064
- Chen Y-C, Lin Q and Chu Y, Domain growth dynamics in single-domain-like BiFeO3 thin films, Appl. Phys. Lett. 94 (2009) 122908. https://doi.org/10.1063/1.3109779
- Son J Y, Park C S, Kim S K and Shin Y H, Writing ferroelectric domain bits on the PbZr0.48Ti0.52O3 thin film, J. Appl. Phys. 104 (2008) 064101. https://doi.org/10.1063/1.2978220
- Kim Y, Kim W, Choi H, Hong S, Ko H, Lee H and No K, Nanoscale domain growth dynamics of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin films, Appl. Phys. Lett. 96 (2010) 012908. https://doi.org/10.1063/1.3290247
- Zhukov S, Genenko Y A and von Seggern H, Experimental and theoretical investigation on polarization reversal in unfatigued lead-zirconate-titanate ceramic, J. Appl. Phys. 108 (2010) 014106. https://doi.org/10.1063/1.3380844
- Jiang A Q, Lee H J, Hwang C S and Scott J F, Sub-Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments, Adv. Funct. Mater 22 (2012) 192-9. https://doi.org/10.1002/adfm.201101521
- Materlik R, Kunneth C and Kersch A, The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model, J. Appl. Phys. 117 (2015) 134109. https://doi.org/10.1063/1.4916707
- Park M H, Lee Y H, Kim H J, Schenk T, Lee W, Do Ki m K, Fengler F P, Mi kolaji ck T, Schroeder U and Hwang C S, Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment, Nanoscale 9 (2017) 9973-86. https://doi.org/10.1039/C7NR02121F
- Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T and Seong Hwang C, Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature, Appl. Phys. Lett. 102 (2013) 242905. https://doi.org/10.1063/1.4811483
- Park M H and Hwang C S, Fluorite-structure antiferroelectrics, Rep Prog Phys 82 (2019) 124502. https://doi.org/10.1088/1361-6633/ab49d6
- Park M H, Schenk T, Hoffmann M, Knebel S, Gartner J, Mikolajick T and Schroeder U, Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications, Nano Energy 36 (2017) 381-9. https://doi.org/10.1016/j.nanoen.2017.04.052
- Park M H, Kim H J, Kim Y J, Moon T, Kim K D and Hwang C S, Thin HfxZr1-xO2 fi lms: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability, Adv. Energy Mater. 4 (2014) 1400610. https://doi.org/10.1002/aenm.201400610
- Park M H, Ki m H J, Ki m Y J, Moon T, Ki m K D, Lee Y H, Hyun S D and Hwang C S, Giant Negative Electrocaloric Effects of Hf0.5Zr0.5O2 Thin Films, Adv. Mater. 28 (2016) 7956-61. https://doi.org/10.1002/adma.201602787
- Hoffmann M, Schroeder U, Kunneth C, Kersch A, Starschich S, Bottger U and Mikolajick T, Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors, Nano Energy 18 (2015) 154-64. https://doi.org/10.1016/j.nanoen.2015.10.005
- Lomenzo P D, Slesazeck S, Hoffmann M, Mikolajick T, Schroeder U and Max B, Ferroelectric Hf1-xZrxO2 memories: device reliability and depolarization fields. NVMTS IEEE (2019) pp 1-8.
- Jo J, Han H, Yoon J-G, Song T, Kim S-H and Noh T, Domain switching kinetics in disordered ferroelectric thin films, Phys. Rev. lett. 99 (2007) 267602. https://doi.org/10.1103/PhysRevLett.99.267602
- Mulaosmanovic H, Chicca E, Bertele M, Mikolajick T and Slesazeck S, Mimicking biological neurons with a nanoscale ferroelectric transistor, Nanoscale 10 (2018) 21755-63. https://doi.org/10.1039/c8nr07135g
- Landauer R, Electrostatic considerations in BaTiO3 domain formation during polarization reversal, J. Appl. Phys. 28 (1957) 227-34. https://doi.org/10.1063/1.1722712
- Du X and Chen I-W, Frequency spectra of fatigue of PZT and other ferroelectric thin films, MRS Online Proceedings Library Archive 493 (1997) 493. https://doi.org/10.1557/PROC-493-493