• Title/Summary/Keyword: NPT-IGBT

Search Result 44, Processing Time 0.026 seconds

Study on changes in electrical and switching characteristics of NPT-IGBT devices by fast neutron irradiation

  • Hani Baek;Byung Gun Park;Chaeho Shin;Gwang Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3334-3341
    • /
    • 2023
  • We studied the irradiation effects of fast neutron generated by a 30 MeV cyclotron on the electrical and switching characteristics of NPT-IGBT devices. Fast neutron fluence ranges from 2.7 × 109 to 1.82 × 1013 n/cm2. Electrical characteristics of the IGBT device such as I-V, forward voltage drop and additionally switching characteristics of turn-on and -off were measured. As the neutron fluence increased, the device's threshold voltage decreased, the forward voltage drop increased significantly, and the turn-on and turn-off time became faster. In particular, the delay time of turn-on switching was improved by about 35% to a maximum of about 39.68 ns, and that of turn-off switching was also reduced by about 40%-84.89 ns, showing a faster switching.

2500V IGBTs with Low on Resistance and Faster Switching Characteristic (낮은 온-저항과 빠른 스위칭 특성을 갖는 2500V급 IGBTs)

  • Shin, Samuell;Koo, Yong-Seo;Won, Jong-Il;Kwon, Jong-Ki;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • This paper presents a new Insulated Gate Bipolar Transistor(IGBT) based on Non Punch Through(NPT) IGBT structure for power switching device. The proposed structure has adding N+ beside the P-base region of the conventional IGBT structure. The added n+ diffusion of the proposed device ensure device has faster turn-off time and lower forward conduction loss than the conventional IGBT structure. But, added n+ region can reduce th breakdown voltage and latching current density of the proposed device due to its high doping concentration. This problems can be overcome by using diverter on the right side of the device. In the simulation results, turn-off time of the proposed device is 0.3us and the on-state voltage drop is 3V. The results show that the proposed device has superior characteristic than conventional structure.

  • PDF

Study of the 1,200 V-Class Floating Island IGBT (1,200 V급 Floating Island IGBT의 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.523-526
    • /
    • 2016
  • This paper was researched about 1,200 V level floating island IGBT (insulated gate bipolar transistor). Presently, 1,200 V level IGBT is used in Inverter for distributed power generation. We analyzed and compared electrical charateristics of the proposed floating island IGBT and conventional IGBT. For analyzing and comparison, we used T-CAD tool and simulated the electrical charateristics of the devices. And we extracted optimal design and process parameter of the devices. As a result of experiments, we obtained 1,456 V and 1,459 V of breakdown voltages, respectively. And we obatined 4.06 V and 4.09 V of threshold voltages, respectively. On the other hand, on-state voltage drop of floating island IGBT was 3.75 V. but on-state vlotage drop of the conventional IGBT was 4.65 V. Therefore, we almost knew that the proposed floating island IGBT was superior than the conventional IGBT in terms of power dissipation.

A Study on Electrical Characteristics Improvement on Field Stop IGBT Using Trench Gate Structure (Trench Gate를 이용한 Field Stop IGBT의 전기적 특성 분석에 관한 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-269
    • /
    • 2012
  • The most recently IGBT (insulated gate bipolar mode transistor) devices are in the most current conduction capable devices and designed to the big switching power device. Use this number of the devices are need to high voltage and low on-state voltage drop. And then in this paper design of field stop IGBT is insert N buffer layer structure in NPT planar IGBT and optimization design of field stop IGBT and trench field stop IGBT, both devices have a comparative analysis and reflection of the electrical characteristics. As a simulation result, trench field stop IGBT is electrical characteristics better than field stop IGBT.

Transient Analysis of PT-IGBT with Different Temperature (PT-IGBT의 온도에 따른 과도특성해석)

  • 이호길;류세환;이용국;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.25-28
    • /
    • 2000
  • In this study, Transient Characteristics of the Punch-Through Insulated Gate Bipolar Transistor (PT-IGBT) has been studied. On the contraty to Non-Punch Through Insulated Gate Bipolar Transistor(NPT-IGBT), PT-IGBT has buffer layer It has a simple drive circuit controlled by the gate voltage of the MOSFET and the low on-state resistance of the bipolar junction transistor. In this paper, the transient characteristics with temperature of the PT-IGBT has been analyzed analytically. PT-IGBT is made to reduce switching power loss. Excess Minority carrier distribution inactive base region and base charge, the rate of voltage with time is expressed analytically to include buffer layer.

  • PDF

An analysis of new IGBT(Insulator Gate Bipolar Transistor) structure having a additional recessedwith E-field shielding layer

  • Yu, Seung-Woo;Lee, Han-Shin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.247-251
    • /
    • 2007
  • The recessed gate IGBT has a lower on-state voltage drop compared with the DMOS IGBT, because there is no JFET resistance. But because of the electric field concentration in the corner of the gate edge, the breakdown voltage decreases. This paper is about the new structure to effectively improve the Vce(sat) voltage without breakdown voltage drop in 1700V NPT type recessed gate IGBT with p floating shielding layer. For the fabrication of the recessed gate IGBT with p floating shielding layer, it is necessary to perform the only one implant step for the shielding layer. Analysis on the Breakdown voltage shows the improved values compared to the conventional recessed gate IGBT structures. The result shows the improvement on Breakdown voltage without worsening other characteristics of the device. The electrical characteristics were studied by MEDICI simulation results.

  • PDF

The Fabrication of Super Junction IGBT with 3,000 V Class Super Junction Field Rings (3,000 V급 초접합 필드링을 갖는 초접합 IGBT 제작에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.551-554
    • /
    • 2015
  • This paper was analyzed electrical characteristics of super junction IGBT with super junction field rings. As a result of super junction IGBT with super junction field rings, we obtained 3,300 V breakdown voltage and good thermal characteristics. we obtained shrinked chip size because field ring was decreased than field ring for conventional IGBT, too. And we fabricated super junction IGBT with super junction field rings. As a result of measuring fabricated chip, we obtained 3,300 V breakdown voltage. The fabricated devices were replaced thyristos using high voltage conversion, sufficiently.

A Design of 2.5kV Power IGBT for High Power (2.5kV급 Power IGBT 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ann, Byoung-Sup;Nam, Tae-Jin;Kim, Bum-June;Lee, Young-Hon;Chung, Hun-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.143-143
    • /
    • 2009
  • 본 논문은 2500V급 planar type의 NPT(Nun-Punch Through)형 IGBT설계 및 제작에 앞서 IGBT(Insulated Gate Bipolar Transistor)소자가 갖는 구조적 변수가 전기적 특성 (Breakdown Voltage, Turnoff Time, Saturation Voltage, 등)결과에 미치는 영향을 분석하여 IGBT 소자가 갖는 구조적 손실을 최적화 하는데 목표를 두었다. 최적화의 진행은 공정 시뮬레이터인 Tsuprem4와 디바이스 분석 시뮬레이터인 MEDICI를 이용하여 소자가 갖는 각각의 parameter값이 전기적 특성에 미치는 영향을 분석함으로 진행 되어졌으며, 향후 고속철 등과 같은 대용량 산업에 기여할 것으로 판단된다.

  • PDF

Modeling of Anode Voltage Drop for PT-IGBT at Turn-off (턴-오프 시 PT-IGBT의 애노드 전압 강하 모델링)

  • Ryu, Se-Hwan;Lee, Ho-Kil;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper, transient characteristics of the Punch Through Insulated Gate Bipolar Transistor (PT-IGBT) have been studied. On the contrary to Non-Punch Through Insulated Gate Bipolar Transistor(NPT-IGBT), it has a buffer layer and reduces switching power loss. It has a simple drive circuit controlled by the gate voltage of the MOSFET and low on-state resistance of the bipolar junction transistor. The transient characteristics of the PT-IGBT have been analyzed analytically. Excess minority carrier and charge distribution in active base region, the rate of anode voltage with time are expressed analytically by adding the influence of buffer layer. The experimental data is obtained from manufacturer. The theoretical predictions of the analysis have been compared with the experimental data obtained from the measurement of a device(600 V, 15 A) and show good agreement.

An Analytical Transient Model for NPT IGBT

  • Ryu, Se-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.26-30
    • /
    • 2001
  • In this paper, transient characteristics of IGBT has been analytically solved to express the excess minority carrier distribution in active base region and the output voltage. Non-Punch Through(NPT) structure has been selected to prove the validity of the model. It is based on the equivalent circuit of MOSFET which supplies a low gain and a high level injection to the base of BJT. None of the quasi static conditions have been assumed to trace the transient characteristics. The basic elements of the model have been derived from the ambipolar transport theory. Theoretical predictions of the output voltages have been obtained with different lifetimes and compared with experimental and theoretical results available in the literature. From the analytical approach, good agreement has been obtained to provide reliable and fast output of the device.

  • PDF