• 제목/요약/키워드: NF$\kappa$B

검색결과 1,671건 처리시간 0.024초

영양각산이 Thioacetamide 유발 간손상에 미치는 영향 (Effect of Youngyanggak-san against Thioacetamide Induced Acute Liver Damage in Rat)

  • 신미래;김경조;김수현;이지혜;권오준;노성수
    • 대한본초학회지
    • /
    • 제33권1호
    • /
    • pp.47-55
    • /
    • 2018
  • Objectives : The current study is to evaluate the hepatoprotective effect of youngyanggak-san (YGS) on thioacetamide (TAA)-induced acute liver injury in rats. Methods : YGS is composed of Glycyrrhizae Radix, Asiasari Radix, Cimicifugae Rhizoma, Saigae Tataricae Cornu. While N-YGS (non-youngyanggak-san) doesn't include Saigae Tataricae Cornu. Two samples were administrated TAA together for 3 days. Thirty-six rats were divided into four groups. Rats except for the normal group were received TAA (200 mg/kg of body weight, I.P) were divided into three groups (n=9/group) : Group 1 (TAA only), Group 2 (TAA + 200 mg/kg YGS) and Group 3 (TAA + 200 mg/kg N-YGS). Acute liver damage confirmed using histological examination, The factors associated with oxidative stress and liver function activity measured in serum. Also, expressions of inflammation related proteins were investigated by western blot analysis. Results : Oxidative stress factors such as ROS and $ONOO^-$ in the Group 2 was manifested by a significant rise compared with Group 1. YGS markedly decreased the elevated ROS and $ONOO^-$. Furthermore, YGS significantly reduced the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) The nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation induced by TAA led to increase both inflammatory mediators and cytokines. While YGS administration remarkably suppressed such the overexpression. In addition, the histopathological analysis showed that the liver tissue lesions were improved obviously in YGS treatment. Conclusion : YGS provided a hepatoprotective effect on acute liver damage through the suppression of oxidative stress. Especially, this effect enhanced markedly when Saigae Tataricae Cornu is included.

Inhibition of Inducible Nitric Oxide Synthase Expression by YS 49, a Synthetic Isoquinoline Alkaloid, in ROS 17/2.8 Cells Activated with $TNF-{\alpha},\;IFN-{\gamma}$ and LPS

  • Kang, Young-Jin;Kang, Sun-Young;Lee, Young-Soo;Park, Min-Kyu;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;YunChoi, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.273-280
    • /
    • 2004
  • Nitric oxide (NO) has been suggested to act as a mediator of cytokine-induced effects of turn over of bone. Activation of the inducible nitric oxide synthase (iNOS) by inflammation has been related with apoptotic cell death in osteoblast. YS 49, a synthetic isoquinoline alkaloid, inhibits NO production in macrophages activated with cytokines. In the present study, we investigated the molecular mechanism of YS 49 to inhibit iNOS expression in ROS 17/2.8 cells, which were activated with combined treatment of inflammatory cytokines $(TNF-{\alpha},\;IFN-{\gamma})$ and lipopolysaccharide (LPS). Results indicated that YS 49 concentration-dependently reduced iNOS mRNA and protein expression, as evidenced by Northern and Western blot analysis, respectively. The underlying mechanism by which YS 49 suppressed iNOS expression was not to affect iNOS mRNA stability but to inhibit activation and translocation of $NF-_kB$ by preventing the degradation of its inhibitory protein $I_kB_{\alpha}$. As expected, YS 49 prevented NO-induced apoptotic cell death by sodium nitroprusside. Taken together, it is concluded that YS 49 inhibits iNOS expression by interfering with degradation of phosphorylated inhibitory $_kB_{\alpha}\;(p-I_kB_{\alpha})$. These actions may be beneficial for the treatment of inflammation of the joint, such as rheumatoid arthritis.

토복령의 항염증 및 세포보호 효과에 미치는 영향 (Anti-Inflammatory Effects and Cytoprotective Effects of Smilacis Chinae Radix)

  • 이선구
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.57-62
    • /
    • 2009
  • 본 연구는 토복령의 항염증 및 세포보호 효과에 미치는 영향에 관한 것으로서 주요 내용은 다음과 같다. 본 실험에서는 세포독성, NO의 생성, PGE2, TNF-$\alpha$와 카탈라아제 농도, SOD, MAP kinase 등을 측정하였다. 본 실험의 결과 토복령 추출물은 세포 독성이 없었고 NO의 생성을 억제하며, 항염증과 세포보호 효과가 있었다. 그러나 이러한 효과에 대한 명확한 메커니즘에 대해서는 좀 더 연구가 필요하다는 내용이다.

Ribosomal Protein L19 and L22 Modulate TLR3 Signaling

  • Yang, Eun-Jeong;Seo, Jin-Won;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.155-162
    • /
    • 2011
  • Background: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. Methods: L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-${\kappa}B$, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. Results: L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. Conclusion: Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.

Th17과 자가면역 관절염 (The Th17 and Autoimmune Arthritis)

  • 조미라;허유정;박진실;이선영;성영철;김호연
    • IMMUNE NETWORK
    • /
    • 제7권1호
    • /
    • pp.10-17
    • /
    • 2007
  • Autoimmune arthritis, such as rheumatoid arthritis (RA), is a chronic inflammatory disorder that primarily affects the joints and then results in their progressive destruction. Effector Th cells have been classified as Th1 and Th2 subsets based on their cytokine expression profiles and immune regulatory function. Another subset of T cells termed Th17 was recendy discovered and known to selectively produce IL-17. Also, Th17 was shown to be generated by TGF${\beta}$ and IL-6 and maintained by IL-23. IL-17 is a proinflammatory cytokine that is considered to involve the development of various inflammatory autoimmune diseases such as RA, asthma, lupus, and allograft rejection. IL-17 is present in the sera, synovial fluids and synovial biopsies of most RA patient. IL-17 activates RA synovial fibroblasts to synthesize IL-6, IL-8 and VEGF via PI3K/Akt and NF-${\kappa}B$ dependent pathway. IL-17 increases IL-6 production, collagen destruction and collagen synthesis. In addition, it not only causes bone resorption but also increases osteoclastogenesis and fetal cartilage destruction. Inhibition of the IL-17 production may contribute a novel therapeutic approach along with potent anti-inflammatory effect and with less immunosuppressive effect on host defenses.

Snake Venom synergized Cytotoxic Effect of Natural Killer Cells on NCI H358 Human Lung Cancer Cell Growth through Induction of Apoptosis

  • Oh, Jae Woo;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제33권2호
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives : I investigated whether snake venom can synergistically strengthen the cytotoxic effects of NK-92 cells, and enhance the inhibition of the growth of lung cancer cells including NCI-H358 through the induction of death receptor dependent extrinsic apoptosis. Methods : Snake venom toxin inhibited cell growth of NCI-H358 Cells and exerted non influence on NK-92 cell viability. Moreover, when they were co-cultured with NK cells and concomitantly treated with $4{\mu}g/m{\ell}$ of snake venom toxin, more influence was exerted on the inhibition of growth of NCI-H358 cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2 and DR3 and in NCI-H358 lung cancer cells was significantly increased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells alone. Coincidentally, Bax, caspase-3 and caspase-8 - expressions of pro-apoptotic proteins in the extrinsic apoptosis pathway, demonstrated significant increase. However, in anti-apoptotic NF-${\kappa}B$ activities, activity of the signal molecule was significantly decreased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells or snake venom toxin treated by NCIH358 alone. Meanwhile, in terms of NO generation, there is a significant increase, in co-culture of NK-92 cells with NCI-H358 cells as well as the co-culture of NK-92 cells and concomitant treatment of $4{\mu}g/m{\ell}$ of snake venom toxin. However, no synergistic increase of NO generation was shown in co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells with NCI-H358 cells. Conclusion : Consequently, this data provides that snake venom toxin could be useful candidate compounds to suppress lung cancer growth along with the cytotoxic effect of NK-92 cells through extrinsic apoptosis.

Anti-inflammatory and PPAR Subtypes Transactivational Activities of Phenolics and Lignans from the Stem Bark of Kalopanax pictus

  • Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Minh, Chau Van;Kiem, Phan Van;Nhiem, Nguyen Xuan;Tai, Bui Huu;Thao, Nguyen Phuong;Luyen, Bui Thi Thuy;Song, Seok-Bean;Kim, Young-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.4049-4054
    • /
    • 2011
  • A new compound, kalopanaxin F (3), and 11 known compounds (1, 2, 4-12), were isolated from the stem bark of Kalopanax pictus. Their structures were elucidated on the basis of chemical and spectroscopic methods. Five of the compounds (2, 3, 5, 6, and 12) significantly inhibited $TNF{\alpha}$-induced NF-${\kappa}B$ transcriptional activity in HepG2 cells in a dose-dependent manner, with $IC_{50}$ values ranging from 6.2 to 9.1 ${\mu}M$. Furthermore, the transcriptional inhibitory function of these compounds was confirmed based on decreases in COX-2 and iNOS gene expression in HepG2 cells. Compounds 3-7, 9, and 12 significantly activated the transcriptional activity of PPARs dose-dependently, with $EC_{50}$ values ranging from 4.1-$12.7{\mu}M$. Compounds 4 and 5 exhibited $PPAR{\alpha}$, $PPAR{\gamma}$, and $PPAR{\beta}({\delta})$ transactivational activities in a dose-dependent manner, with $EC_{50}$ values of 16.0 and 17.0, 8.7 and 16.5, 26.2 and 26.3 ${\mu}M$, respectively.

전립선 비대유도 쥐의 전립선 조직에서 울금 급여에 따른 염증인자의 변화 (Effect of Hot Water Extract from Curcuma longa L. on Inflammatory Mediators in Prostate Tissue of BPH-Induced Rats)

  • 이정윤;김용재;전우진;이유현
    • 동아시아식생활학회지
    • /
    • 제25권5호
    • /
    • pp.806-812
    • /
    • 2015
  • 본 연구에서는 테스토스테론으로 전립선 비대를 유도한 래트에 울금(Curcuma longa L.)의 열수추출물을 다양한 농도로 급여하여 그에 따른 염증인자의 변화를 검토하였다. 조직학적 분석에서 울금 열수추출물(CL) 급여에 따라 전립선비대가 완화되는 것을 검토할 수 있었으며, 염증성 사이토카인인 TNF-${\alpha}$, IL-6 및 IL-$1{\beta}$이 전립선 비대 유도군에서 그 발현이 현저히 증가하였으나, 각 농도의 CL 군에서는 농도의존적으로 감소하였다. 또한, CL 급여에 따라 finasteride enzyme인 COX-2와 염증 전사인자인 NF-${\kappa}b$의 활성화의 감소를 확인하였다. 이와 같은 결과는 전립선 비대에서 울금 열수추출물이 항염증 효과로써 전립선 비대의 유발 및 발전을 억제시킬 수 있다는 것을 부분적으로나마 설명할 수 있는 기초 자료가 될 수 있다고 사료된다.

Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on β-amyloid-induced microglial activation

  • Yang, Seung-Ju;Kim, Jiae;Lee, Sang Eun;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제50권12호
    • /
    • pp.634-639
    • /
    • 2017
  • We aimed to assess the anti-inflammatory and antioxidative properties of KHG26792, a novel azetidine derivative, in amyloid ${\beta}$ ($A{\beta}$)-treated primary microglial cells. KHG26792 attenuated the $A{\beta}-induced$ production of inflammatory mediators such as IL-6, $IL-1{\beta}$, $TNF-{\alpha}$, and nitric oxide. The levels of protein oxidation, lipid peroxidation, ROS, and NADHP oxidase enhanced by $A{\beta}$ were also downregulated by KHG26792 treatment. The effects of KHG26792 against the $A{\beta}-induced$ increases in inflammatory cytokine levels and oxidative stress were achieved by increasing the phosphorylation of $Akt/GSK-3{\beta}$ signaling and by decreasing the $A{\beta}-induced$ translocation of $NF-{\kappa}B$. Our results provide novel insights into the use of KHG26792 as a potential agent against $A{\beta}$ toxicity, including its role in the reduction of inflammation and oxidative stress. Nevertheless, further investigations of cellular signaling are required to clarify the in vivo effects of KHG26792 against $A{\beta}-induced$ toxicity.

PC-12 cell에서 감초성분의 Liquiritigenin이 납에 의해 유도된 세포독성과 nitric oxide production에 미치는 영향 (Cytoprotective effects of liquiritigenin, a component of licorice, against lead-induced cytotoxicity in PC-12 cells.)

  • 박은영;박숙자;이종록;지선영;변성희;김상찬
    • 대한본초학회지
    • /
    • 제22권2호
    • /
    • pp.17-24
    • /
    • 2007
  • Objectives : Licorice has been commonly used as a detoxification agent. We previously reported that licorice and its component, liquiritigenin, exhibits cytoprotective activity against Pb-induced toxicity. The present study was conducted to evaluate the effect of liquiritigenin on the lead-induced cytotoxicity in PC-12 cells. Methods : PC-12 cells were pre-treated with liquiritigenin, and further incubated with lead 100 ${\mu}M$ for $12^{\sim}48$ hours. The viability of PC-12 cells was measured by MTT assay, and the levels of proteins were analysed by western blot. Results : Severe cytotoxicity was induced and nitric oxide (NO) production was augmented by the exposure of lead. Liquiritigenin protected cells from lead-induced cytoxicity and reduced NO production in a dose-dependent manner. The inhibition of NO production was due to the suppression of iNOS protein via the inhibition of $NF-{\kappa}B$ nuclear translocation, determined by western blot analysis. Conclusions : These results suggest that liquiritigenin may exert cytoprotective effect against lead toxicity by inhibiting NO production.

  • PDF