• 제목/요약/키워드: Multi-layer neural network

검색결과 516건 처리시간 0.028초

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

매니퓰레이터의 신경제어를 위한 새로운 학습 방법 (A new training method for neuro-control of a manipulator)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1022-1027
    • /
    • 1991
  • A new method to control a robot manipulator by neural networks is proposed. The controller is composed of both a PD controller and a neural network-based feedforward controller. MLP(multi-layer perceptron) neural network is used for the feedforward controller and trained by BP(back-propagation) learning rule. Error terms for BP learning rule are composed of the outputs of a PD controller and the acceleration errors of manipulator joints. We compare the proposed method with existing ones and contrast performances of them by simulation. Also, We discuss the real application of the proposed method in consideration of the learning time of the neural network and the time required for sensing the joint acceleration.

  • PDF

Rapid and Brief Communication GPU implementation of neural networks

  • Oh, Kyoung-Su;Jung, Kee-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 3부
    • /
    • pp.322-325
    • /
    • 2007
  • Graphics processing unit (GPU) is used for a faster artificial neural network. It is used to implement the matrix multiplication of a neural network to enhance the time performance of a text detection system. Preliminary results produced a 20-fold performance enhancement using an ATI RADEON 9700 PRO board. The parallelism of a GPU is fully utilized by accumulating a lot of input feature vectors and weight vectors, then converting the many inner-product operations into one matrix operation. Further research areas include benchmarking the performance with various hardware and GPU-aware learning algorithms. (c) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

능동질량감쇠기를 이용한 구조물 진동의 지능제어 (Intelligent Control of Structural Vibration Using Active Mass Damper)

  • 김동현;오주원;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.286-290
    • /
    • 2000
  • Optimal neuro-control algorithm is extended to the control of a multi-degree-of-freedom structure. An active mass driver(AMD) system on the top roof is used as an exciter. The control signals are made by a multi-layer perceptron(MLP) which is trained by minimizing a sub-optimal performance index. The performance index is a function of both the output responses and the control signals. Structure having nonlinear hysteretic behavior is also trained and controlled by using proposed control algorithm. In training neuro-controller, emulator neural network is not used. Instead, sensitivity-test data are used. Therefore, only one neural network is used for the control system. Both the time delay effect and the dynamics of hydraulic actuator are included in the simulation. Example shows that optimal neuro-control algorithm can be applicable to the multi-degree of freedom structures.

  • PDF

Neural Netwotk Analysis of Acoustic Emission Signals for Drill Wear Monitoring

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.254-262
    • /
    • 2008
  • The objective of the proposed study is to produce a tool-condition monitoring (TCM) strategy that will lead to a more efficient and economical drilling tool usage. Drill-wear monitoring is an important attribute in the automatic cutting processes as it can help preventing damages of the tools and workpieces and optimizing the tool usage. This study presents the architectures of a multi-layer feed-forward neural network with back-propagation training algorithm for the monitoring of drill wear. The input features to the neural networks were extracted from the AE signals using the wavelet transform analysis. Training and testing were performed under a moderate range of cutting conditions in the dry drilling of steel plates. The results indicated that the extracted input features from AE signals to the supervised neural networks were effective for drill wear monitoring and the output of the neural networks could be utilized for the tool life management planning.

신경회로망을 이용한 도립전자의 학습제어 (Learning Control of Inverted Pendulum Using Neural Networks)

  • 이재강;김일환
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.99-107
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and the environments as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to parition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum of the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

계층구조 신경망을 이용한 한글 인식 (Hangul Recognition Using a Hierarchical Neural Network)

  • 최동혁;류성원;강현철;박규태
    • 전자공학회논문지B
    • /
    • 제28B권11호
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리 (Neural Network based Aircraft Engine Health Management using C-MAPSS Data)

  • 윤유리;김석구;조성희;최주호
    • 항공우주시스템공학회지
    • /
    • 제13권6호
    • /
    • pp.17-25
    • /
    • 2019
  • 항공기 엔진의 고장예지 및 건전성 관리(PHM)는 고장 또는 수명한계 도달 전에 잔존 유효 수명을 예측하는 것이다. PHM 기술 중 예측모델을 확립하는 방법은 물리 기반과 데이터 기반 방법이 있다. 물리기반 방법은 적은 데이터로 정확한 예측이 가능하지만 확립된 손상 물리 모델이 적어서 적용에 한계가 있다. 본 연구는 따라서 데이터 기반 방법을 적용하였으며, 수명 예측을 위해서 신경회로망 알고리즘 중 Multi-layer Perceptron을 이용하였다. 이를 위해 미국 항공우주국(NASA)에서 개발한 C-MAPSS 코드로 생성된 가상 데이터 세트를 이용하여 신경회로망을 학습하였다. 학습된 신경회로망 모델은 테스트 세트에 적용한 후 잔존 유효 수명의 신뢰구간을 예측하고 실제 값을 통해 정확도를 검증하였다. 또한 본 연구에서 제시된 방법을 기존 문헌의 것과도 비교하였고 그 결과 비교적 양호한 정확도를 확인할 수 있었다.

인공신경망을 이용한 터널시공에서 현장 적용성 (Site Application of Artificial Neural Network for Tunnel Construction)

  • 송주현;채휘영;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제13권8호
    • /
    • pp.25-33
    • /
    • 2012
  • 터널 설계 시 해당지반에 관한 정보를 정확히 반영하는 것은 대단히 중요하다. 하지만 다양한 지형 및 지질조건을 모두 고려한 지반조사 및 시험 등은 경제적, 기술적으로 인하여 현실적으로 실시하기 어렵기 때문에 한정된 정보에 의하여 해석 및 설계를 하고 있는 실정이다. 본 연구는 도심지 및 산악지역 터널공사 시, 보다 정확한 안정성 검토 및 거동 예측을 수행하여 선정 결과에 대한 현장 적용성 여부를 판단하기 위해 인공신경망 이론의 적용을 통하여 기존 거동예측의 한계성을 극복하고자 하였다. 먼저, 현장 데이터를 확보하여 인공신경망 중 다층퍼셉트론을 연구에 적합한 구조로 구축하고, 역전파 알고리즘으로 학습시켜 적용하였다. 인공신경망을 이용한 현장적용성의 학습을 위한 자료는 터널의 지보패턴, RMR, Q, 암종, 굴진장, 굴착형태, 굴착경과일 등 터널거동에 영향을 미치는 영향인자를 고려하여 신뢰성 분석을 실시하고 선별된 계측자료의 결과를 데이터베이스화하여 사용하였다. 학습이 완료된 인공신경망 모델을 이용하여 터널시공현장의 굴착경과일에 따른 천단변위, 내공변위, 지중변위, 록볼트축력을 예측하고 현장 계측치와 비교분석을 통하여 인공신경망을 이용한 터널 시공 시 현장적용성을 확인하였다.