References
- Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput. Aid. Civil Infrastr. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219
- Agrawal, A., Ghosn, M., Alampalli, S. and Pan, Y. (2011), "Seismic fragility of retrofitted multispan continuous steel bridges in New York", J. Bridge Eng., 17(4), 562-575. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000290
- Arslan, M.H. (2010), "Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes", Adv. Eng. Softw., 41(7), 946-955. https://doi.org/10.1016/j.advengsoft.2010.05.009
- ATC (1991), "Seismic vulnerability and impact of disruption of lifelines in the Coterminous United States", Report No. ATC-25, Applied Technology Council, Redwood City, CA.
- Aviram, A., Mackie, K.R. and Stojadinovic, B. (2008), "Guidelines for nonlinear analysis of bridge structures in California", Pacific Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, PEER Report 2008/03.
- Avsar, O. and Yakut, A. (2012), "Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey", Struct. Eng. Mech., 43(1), 127-145. https://doi.org/10.12989/sem.2012.43.1.127
- Avsar, O., Yakut, A. and Caner, A. (2011), "Analytical fragility curves for ordinary highway bridges in Turkey", Earthq. Spectra, 27(4), 971-996. https://doi.org/10.1193/1.3651349
- Bae, S. and Bayrak, O. (2008), "Plastic hinge length of reinforced concrete columns", ACI Struct. J., 105(3), 290.
- Banerjee, S. and Shinozuka, M. (2007), "Nonlinear static procedure for seismic vulnerability assessment of bridges", Comput. Aid. Civil Infrastr. Eng., 22(4), 293-305. https://doi.org/10.1111/j.1467-8667.2007.00486.x
- Bayrak, O. and Sheikh, S.A. (2001), "Plastic hinge analysis", J. Struct. Eng., 127(9), 1092-1100. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1092)
- Bazant, Z.P. and Bhat, P.D. (1976), "Endochronic theory of inelasticity and failure of concrete", J. Eng. Mech. Div., 102(4), 701-722.
- Billah, A. and Alam, M.S. (2015), "Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy", Earthq. Spectra, 31(3), 1515-1541. https://doi.org/10.1193/112512EQS337M
- Billah, A.M. and Alam, M.S. (2016), "Performance-based seismic design of shape memory alloy-reinforced concrete bridge piers I: Development of performance-based damage states", J. Struct. Eng., 142(12), 04016140. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001458
- Billah, A.M. and Alam, M.S. (2016), "Performance-based seismic design of shape memory alloy-reinforced concrete bridge piers. I: Development of performance-based damage states", J. Struct. Eng., 142(12), 04016140. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001458
- Billah, A.M., Alam, M.S. and Bhuiyan, M.R. (2012), "Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion", J. Bridge Eng., 18(10), 992-1004. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000452
- Brandenberg, S.J., Zhang, J., Kashighandi, P., Huo, Y. and Zhao, M. (2011), "Demand fragility surfaces for bridges in liquefied and laterally spreading ground", Pacific Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, PEER Report 2011/0.
- Caltrans (2013), Seismic Design Criteria Version 1.7, California Department of Transportation, Sacramento, CA.
- Choi, E., DesRoches, R. and Nielson, B. (2004), "Seismic fragility of typical bridges in moderate seismic zones", Eng. Struct., 26(2), 187-199. https://doi.org/10.1016/j.engstruct.2003.09.006
- Computers and Structures Inc. (2009), "Integrated finite element analysis and design of structures basic analysis reference manual", Computers and Structures, Berkeley, CA, USA
- Elshafey, A.A., Haddara, M.R. and Marzouk, H. (2010), "Damage detection in offshore structures using neural networks", Marine Struct., 23(1), 131-145. https://doi.org/10.1016/j.marstruc.2010.01.005
- Fakharifar, M., Chen, G., Dalvand, A. and Shamsabadi, A. (2015), "Collapse vulnerability and fragility analysis of substandard RC bridges rehabilitated with different repair jackets under postmainshock cascading events", Int. J. Concrete Struct. Mater., 9(3), 345-367. https://doi.org/10.1007/s40069-015-0107-6
- FEMA (2003), HAZUS-MH MR1: Technical Manual, Vol. Earthquake Model, Federal Emergency Management Agency; Washington D.C.
- FHWA (1995), Seismic Retrofitting Manual for Highway Bridges Publication No.FHWA-RD-94-052, Office of Engineering and Highway Operations R&D, Federal Highway Administration; McLean, VA.
- Graham, L.D., Forbes, D.R. and Smith, S.D. (2006), "Modeling the ready mixed concrete delivery system with neural networks", Auto. Constr., 15(5), 656-663. https://doi.org/10.1016/j.autcon.2005.08.003
- Hancilar, U., Taucer, F. and Corbane, C. (2013), "Empirical fragility functions based on remote sensing and field data after the 12 January 2010 Haiti earthquake", Earthq. Spectra, 29(4), 1275-1310. https://doi.org/10.1193/121711EQS308M
- Hasanzadehshooiili, H., Lakirouhani, A. and Sapalas, A. (2012), "Neural network prediction of buckling load of steel archshells", Arch. Civil Mech. Eng., 12(4), 477-484. https://doi.org/10.1016/j.acme.2012.07.005
- HAZUS (1997), MH 2.0, Technical Manual, Federal Emergency Management Agency, Washington, DC.
- Hose, Y., Silva, P. and Seible, F. (2000), "Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads", Earthq. Spectra, 16(2), 413-442. https://doi.org/10.1193/1.1586119
- Huo, Y. and Zhang, J. (2012), "Effects of pounding and skewness on seismic responses of typical multispan highway bridges using the fragility function method", J. Bridge Eng., 18(6), 499-515. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000414
- Hwang, H., Liu, J. and Chiu, Y. (2001), "Seismic fragility analysis of highway bridges", Center for Earthquake Research and Information, The University of Memphis, MAEC RR-4 Project.
- Jara, M., Jara, J. and Olmos, B. (2013), "Seismic energy dissipation and local concentration of damage in bridge bents", Struct. Infrastr. Eng., 9(8), 794-805. https://doi.org/10.1080/15732479.2011.615330
- Kalantari, Z. and Razzaghi, M. (2015), "Predicting the buckling capacity of steel cylindrical shells with rectangular stringers under axial loading by using artificial neural networks", Int. J. Eng.-Tran. B: Appl., 28(8), 1154.
- Kawashima, K. (2000), "Seismic design and retrofit of bridges", Bull. NZ Soc. Earthq. Eng., 33(3), 265-285.
- Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", Automated Vehicles Symposium, San Francisco, July.
- Kircher, C.A., Nassar, A.A., Kustu, O. and Holmes, W.T. (1997), "Development of building damage functions for earthquake loss estimation", Earthq. Spectra, 13(4), 663-682. https://doi.org/10.1193/1.1585974
- Kowalsky, M.J. (2000), "Deformation limit states for circular reinforced concrete bridge columns", J. Struct. Eng., 126(8), 869-878. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(869)
- Lagaros, N.D. and Fragiadakis, M. (2007), "Fragility assessment of steel frames using neural networks", Earthq. Spectra, 23(4), 735-752. https://doi.org/10.1193/1.2798241
- Mander, J., Priestley, M. and Park, R. (1988), "Observed stressstrain behavior of confined concrete", J. Struct. Eng., 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
- Maroney, B.H. (1995), Large Scale Bridge Abutment Tests to Determine Stiffness and Ultimate Strength Under Seismic Loading, University of California, Davis.
- Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A. (2008), "Damage detection of truss bridge joints using Artificial Neural Networks", Exp. Syst. Appl., 35(3), 1122-1131.
- Monti, G. and Nistico, N. (2002), "Simple probability-based assessment of bridges under scenario earthquakes", J. Bridge Eng., 7(2), 104-114. https://doi.org/10.1061/(ASCE)1084-0702(2002)7:2(104)
- Moschonas, I.F., Kappos, A.J., Panetsos, P., Papadopoulos, V., Makarios, T. and Thanopoulos, P. (2009), "Seismic fragility curves for Greek bridges: methodology and case studies", Bull. Earthq. Eng., 7(2), 439-468. https://doi.org/10.1007/s10518-008-9077-2
- Mosleh, A. (2016c), "Seismic vulnerability assessment of existing concrete highway Iranian bridges", Doctor of Philosophy, Aveiro University, http://hdl.handle.net/10773/17173.
- Mosleh, A., Jara, J. and Varum, H. (2015), "A methodology for determining the seismic vulnerability of old concrete highway bridges by using fragility curves", J. Struct. Eng. Geotech., 5(1), 1-7.
- Mosleh, A., Razzaghi, M. S., Jara, J. andVarum, H. (2016b), "Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources", Earthq. Struct., 11(3), 517-538. https://doi.org/10.12989/eas.2016.11.3.517
- Mosleh, A., Razzaghi, M.S., Jara, J. and Varum, H. (2016a), "Seismic fragility analysis of typical Pre-1990 bridges due to near and far-field ground motions", Int. J. Adv. Struct. Eng., 8(1), 1-9. https://doi.org/10.1007/s40091-016-0108-y
- Mosleh, A., Razzaghi, M.S., Jara, J. and Varum, H. (2018b), "Probabilistic seismic performance analysis of RC bridges", J. Earthq. Eng., 1-25, doi.org/10.1080/13632469.2018.1477637.
- Mosleh, A., Sepahvand, S., Varum, H., Jara, J., Razzaghi, M.S. and Marburg, S. (2018a), "Stochastic collocation-based nonlinear analysis of concrete bridges with uncertain parameters", Struct. Infrastr. Eng. J., 14(10),1324-1338. https://doi.org/10.1080/15732479.2018.1434209
- Mukherjee, A. and Biswas, S.N. (1997), "Artificial neural networks in prediction of mechanical behavior of concrete at high temperature", Nucl. Eng. Des., 178(1), 1-11. https://doi.org/10.1016/S0029-5493(97)00152-0
- MuntasirBillah, A. and ShahriaAlam, M. (2015), "Seismic fragility assessment of highway bridges: a state-of-the-art review", Struct. Infrastr. Eng., 11(6), 804-832. https://doi.org/10.1080/15732479.2014.912243
- O'Rourke, M.J. and So, P. (2000), "Seismic fragility curves for ongrade steel tanks", Earthq. Spectra, 16(4), 801-815. https://doi.org/10.1193/1.1586140
- Padgett, J.E., Ghosh, J. and Duenas-Osorio, L. (2013), "Effects of liquefiable soil and bridge modelling parameters on the seismic reliability of critical structural components", Struct. Infrastr. Eng., 9(1), 59-77.
- Perlovsky, L.I. (2001), Neural Networks and Intellect: Using Model-Based Concepts, Oxford University Press, New York.
- Priestley, M.N., Seible, F. and Calvi, G.M. (1996), Seismic Design and Retrofit of Bridges, John Wiley & Sons.
- Rafiq, M., Bugmann, G. and Easterbrook, D. (2001), "Neural network design for engineering applications", Comput. Struct., 79(17), 1541-1552. https://doi.org/10.1016/S0045-7949(01)00039-6
- Razzaghi, M.S. and Eshghi, S. (2014), "Probabilistic seismic safety evaluation of precode cylindrical oil tanks", J. Perform. Constr. Facil., 29(6), 04014170. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000669
- Razzaghi, M.S. and Mohebbi, A. (2011), "Predicting the seismic performance of cylindrical steel tanks using artificial neural networks (ann)", Acta Polytechnica Hungarica, 8(2), 129-140.
- Sadovsky, Z. and Soares, C.G. (2011), "Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections", Reliab. Eng. Syst. Saf., 96(6), 713-717. https://doi.org/10.1016/j.ress.2011.02.010
- Seo, J. and Linzell, D.G. (2012), "Horizontally curved steel bridge seismic vulnerability assessment", Eng. Struct., 34, 21-32. https://doi.org/10.1016/j.engstruct.2011.09.008
- Shamsabadi, A. (2007), "Three-dimensional nonlinear seismic soil-abutment-foundation structure interaction analysis of skewed bridges", Ph.D. Dissertation, University of Southern California, Los Angeles, CA.
- Sheikh, S. and Uzumeri, M. (1980), "Strength and ductility of confined concrete columns", J. Struct. Eng., 106, 1079-1102.
- Shinozuka, M., Feng, M., Kim, H., Uzawa, T. and Ueda, T. (2003), "Statistical analysis of fragility curves", Report No. MCEER-03-0002, Multidisciplinary Center for Earthquake Engineering Research.
- Stefanidou, S.P. and Kappos, A.J. (2017), "Methodology for the development of bridge-specific fragility curves", Earthq. Eng. Struct. Dyn., 46(1), 73-93. https://doi.org/10.1002/eqe.2774
- Stewart, J.P., Taciroglu, E., Wallace, J.W., Ahlberg, E.R., Lemnitzer, A., Rha, C. and Salamanca, A. (2007), "Full scale cyclic testing of foundation support systems for highway bridges. Part II: Abutment backwalls", Retrieved from Los Angeles, CA.
- Straub, D. and Der Kiureghian, A. (2008), "Improved seismic fragility modeling from empirical data", Struct. Saf., 30(4), 320-336. https://doi.org/10.1016/j.strusafe.2007.05.004
- Tavares, D.H., Padgett, J.E. and Paultre, P. (2012), "Fragility curves of typical as-built highway bridges in eastern Canada", Eng. Struct., 40, 107-118. https://doi.org/10.1016/j.engstruct.2012.02.019
- Torbol, M. and Shinozuka, M. (2012), "Effect of the angle of seismic incidence on the fragility curves of bridges", Earthq. Eng. Struct. Dyn., 41(14), 2111-2124. https://doi.org/10.1002/eqe.2197
- Torbol, M. and Shinozuka, M. (2014), "The directionality effect in the seismic risk assessment of highway networks", Struct. Infrastr. Eng., 10(2), 175-188. https://doi.org/10.1080/15732479.2012.716069
- Waszczyszyn, Z. and Bartczak, M. (2002), "Neural prediction of buckling loads of cylindrical shells with geometrical imperfections", Int. J. Nonlin. Mech., 37(4-5), 763-775. https://doi.org/10.1016/S0020-7462(01)00111-1
- Whitman, R.V., Vanmarcke, E.H., de Neufville, R.L., Brennan, J., Cornell, C.A. and Biggs, J.M. (1975), "Seismic design decision analysis", J. Struct. Div., 101(5), 1067-1084.
- Yazgan, U. (2015), "Empirical seismic fragility assessment with explicit modeling of spatial ground motion variability", Eng. Struct., 100(1), 479-489.