
Pattern Recognition 37 (2004) 1311–1314
www.elsevier.com/locate/patcog

Rapid and Brief Communication

GPU implementation of neural networks

Kyoung-Su Oh∗, Keechul Jung
School of Media, College of Information Science, Soongsil University, 1, SangDo-Dong, DongJak-Gu, Seoul, 156-743, Republic of Korea

Received 6 January 2004; accepted 14 January 2004

Abstract

Graphics processing unit (GPU) is used for a faster arti/cial neural network. It is used to implement the matrix multiplication
of a neural network to enhance the time performance of a text detection system. Preliminary results produced a 20-fold
performance enhancement using an ATI RADEON 9700 PRO board. The parallelism of a GPU is fully utilized by accumulating
a lot of input feature vectors and weight vectors, then converting the many inner-product operations into one matrix operation.
Further research areas include benchmarking the performance with various hardware and GPU-aware learning algorithms.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Graphics processing unit(GPU); Neural network(NN); Multi-layer perceptron; Text detection

1. Introduction

Recently graphics hardware has become increasingly
competitive as regards speed, programmability, and price.
Besides, graphics processing units (GPUs) have already
been used to implement many algorithms in various areas,
including computational geometry, scienti/c computa-
tion, and image processing, as well as computer graphics
[1,2].
In the case of using a neural network (NN) for image

processing and pattern recognition, the main problem is the
computational complexity in the testing stage, which ac-
counts for most of the processing time. Moreover, NN-based
image convolution has to exhaustively scan an input im-
age in order to process an entire image [3]. Although an
NN can be simulated using software, many potential NN
applications require real-time processing, which means
fully parallel specially designed hardware implementations,
such as an FPGA-based realization of an NN. However,
this is somewhat expensive and involves extra design
overheads [4].

∗ Corresponding author. Tel.: +82-2-828-7260;
Fax: +82-2-822-3622.

E-mail addresses: oks@ssu.ac.kr (K.-S. Oh), kcjung@ssu.ac.kr
(K. Jung).

Accordingly, the current paper presents a faster NN us-
ing common graphics hardware GPU. Although no graph-
ics hardware is dedicated to NN computation, it can still be
adapted to many pattern recognition problems with an inex-
pensive and minimal hardware overhead. The essential oper-
ation in an NN is the inner-product between a weight vector
and an input vector in each layer. Therefore, to utilize the
parallelism of a GPU, lots of input feature vectors and weight
vectors are accumulated, then the many inner-product op-
erations are converted into one matrix operation. As such,
‘multiplication’ and a ‘non-linear threshold function, such
as a sigmoid’ can be eHectively implemented using the ver-
tex shader and pixel shader in a GPU.

2. Neural network architecture

An arti/cial neural network, usually referred to as ‘neural
network’, is based on the concept of the workings of the
human brain. There are many diHerent types of NN, with the
more popular being a multilayer perceptron, learning vector
quantization, radial basis function, Hop/eld, and Kohonen.
The current study focuses on using a GPU to implement

a multilayer perceptron, which is usually fully connected
between adjacent layers. The input layer receives the in-
put features of a given application. Although the network

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2004.01.013

3권 322

mailto:oks@ssu.ac.kr
mailto:kcjung@ssu.ac.kr

1312 K.-S. Oh, K. Jung / Pattern Recognition 37 (2004) 1311–1314

structure can vary as regards the number of layers, number of
nodes in each layer, and input mask size, each layer performs
the same inner-product operation between the given input
vectors and the weight vectors, followed by a non-linear
function. Moreover, many inner-product operations can be
replaced with a matrix multiplication, which is more appro-
priate for GPU implementation.

3. GPU processing

Graphics hardware has only been used for rendering
within the last few decades, however, its extended capabil-
ities in supporting complex operations have also become
useful in non-graphics applications. In particular, the advent
of a programmable vertex shader and pixel shader enables
Jexible functions for general computation. Since GPUs are
designed for high-performance rendering where repeated
operations are common, they are more eHective in utilizing
parallelism and more pipelined than general purpose CPUs.
Therefore, in areas where repeated operations are common,
a GPU can produce a better performance than a CPU.
The mechanism of general computation using a GPU is

as follows. The input is transferred to the GPU as textures
or vertex values. The computation is then performed by the
vertex shader and pixel shader during a number of rendering
passes. The vertex shader performs a routine for every ver-
tex that involves computing its position, color, and texture
coordinates, while the pixel shader is performed for every
pixel covered by polygons and outputs the color of the pixel.
As described above, the inner-product operation for each

layer of an NN can be replaced with a matrix multiplication
based on accumulating the input vectors and weight vec-
tors. As such, the computation-per-layer can be written as
follows:

W =




w11 w12 w13 : : : w1N

w21 w22 w23 : : : w2N

: : : : : : : : : : : : : : :

wM1 wM2 wM3 : : : wMN



=




W1

W2

: : :

WM



;

X =




x11 x12 x13 : : : x1L

x21 x22 x23 : : : x2L

: : : : : : : : : : : : : : :

xN1 xN2 xN3 : : : xNL




=
[
X1 X2 X3 · · · XL

]
;

B =




b1 b1 b1 : : : b1

b2 b2 b2 : : : b2

: : : : : : : : : : : : : : :

bM bM bM : : : bM



; (1)

M =W × X + B

=




W1 · X1 W1 · X2 W1 · X3 : : : W1 · XN
W2 · X1 W2 · X2 W2 · X3 : : : W2 · XN
: : : : : : : : : : : : : : :

WM · X1 WM · X2 WM · X3 : : : WM · XN




+




b1 b1 b1 : : : b1

b2 b2 b2 : : : b2

: : : : : : : : : : : : : : :

bM bM bM : : : bM




=




m11 m12 m13 : : : m1L

m21 m22 m23 : : : m2L

m31 m32 m33 : : : m3L

: : : : : : : : : : : : : : :

mM1 mM2 mM3 : : : mML



; (2)

R= sigmoid(M)

=




1+e−m11 1+e−m12 1+e−m13 : : : 1+e−m1L

1+e−m21 1+e−m22 1+e−m23 : : : 1+e−m2L

: : : : : : : : : : : : : : :

1+e−mM1 1+e−mM2 1+e−mM3 : : : 1+e−mML



;

(3)

where wij denotes the weight at the connection between the
ith node of the output layer and the jth node of the input
layer, M is the number of nodes in the output layer, and N
is the number of nodes in the input layer. In addition, xij
is the ith feature value of the jth input vector and bi is the
bias term for the ith output node from L input vectors. The
/nal result Rij is the output of the ith output node for the
jth input vector.
The above computation comprises of a matrix multiplica-

tion followed by a bias factor addition and sigmoid opera-
tion. The matrix multiplication is explained /rst. The method
proposed by Moravanszky [1] is used to implement the ma-
trix multiplication. The two matrices are converted into tex-
tures, denoted by texture W and texture X , then the matrix
multiplication is performed by rendering. A rectangle is ren-
dered to cover the whole screen. The vertex shader outputs
the position and texture coordinates for each vertex of the
rectangle, where each vertex has two texture coordinates:
one for the row of texture W and the other for the column
of texture X . For example, the upper left vertex will have
the texture coordinates of the /rst row of texture W and the
/rst column of texture X , while the upper right vertex will
have the texture coordinates of the /rst row of texture W
and the last column of texture X , and so on. As a result of

3권 323

K.-S. Oh, K. Jung / Pattern Recognition 37 (2004) 1311–1314 1313

Render

Pixel shader
performs inner product of

row and column

texture W

*= N

N

texture X

Vertex shader
Generates full screen rectangle

Each of four vertices has
texture coordinates

corresponding to a row in W
and a column in X

N

M

L

L

M

N

texture X × Y

Fig. 1. Overview of matrix multiplication using GPU.

the vertex shader, every pixel (i; j) has texture coordinates
corresponding to the ith row of W and the jth column of X .
The pixel shader then performs the inner-product between
the row of W and the column of X speci/ed by the texture
coordinates. Fig. 1 shows an example of matrix multiplica-
tion using a GPU. The number of rendering passes required
for matrix multiplication depends on the capability of the
GPU, including the number of pixel shader operations and
number of texture load operations.
The bias term addition and sigmoid operation can be per-

formed in one rendering pass. The bias texture and texture
that contains the result of the matrix multiplication, texture
W ×X , are set as the active texture. The vertex shader then
outputs a full-screen rectangle as before. Each vertex’s tex-
ture coordinate for the texture W × X correspond to its
position. For example, the upper left vertex has the texture
coordinate (0; 0), while the texture coordinate for the upper
right vertex is (1; 0). As the bias term is identical for one
row, the bias term matrix is one-dimensional and the bias
texture coordinates for each vertex correspond to its vertical
position. The pixel shader adds two textures and performs a
sigmoid operation.
If there is more than one layer in an NN, the above pro-

cedure is repeated for each layer. The result of the previous
layer is saved in the form of a render target texture, which
is then used as an input for the next layer. Note that, even
though an NN may have multiple layers, the GPU can per-
form all the operations after texture creation.

4. Application to pattern recognition

Recently, researchers have attempted text-based retrieval
of image and video data using several image processing

techniques [3]. As such, an automatic text detection algo-
rithm for image data and video documents is important as
a preprocessing stage for optical character recognition, and
an NN-based text detection method has several advantages
over other methods [3].
Therefore, this paper brieJy describes such a text detec-

tion method, and readers are referred to the author’s previous
publication for more details [3]. In the proposed method, an
NN is used to classify the pixels of input images, whereby
the feature extraction and pattern recognition stage are inte-
grated in the neural network. The NN then examines local
regions looking for text pixels that may be contained in a
text region. Therefore, an M × M pixel region in the im-
age is received as the input and a classi/ed image is gen-
erated as the output. After the pattern passes the network,
the value of the output node is compared with a threshold
value and the class of each pixel determined, resulting in a
classi/ed image. GPU-based pipelining processing is used
to reduce the processing time, and the GPU’s performance
is maximized by accumulating a large number of input vec-
tors 1 to create a two-dimensional texture. The input layer
then receives the grey values for the pixels at prede/ned po-
sitions inside an M×M window over the input image. Ex-
periments were conducted using an 11 × 11 input window
size, with the number of nodes in each hidden layer set at
30. As a result, the processing time for pixel classi/cation
was signi/cantly reduced using a GPU. Fig. 2(b) shows the
pixel classi/cation result for the left input image, where a
black pixel denotes a text pixel. The classi/cation using a
GPU produced almost the same result as without a GPU.

1 It is dependent on the GPU con/guration. The maximum tex-
ture size of an ATI RADEON 9700 PRO board is 2048.

3권 324

1314 K.-S. Oh, K. Jung / Pattern Recognition 37 (2004) 1311–1314

Fig. 2. Experimental Results: (a) test image, (b) result of MLP with GPU.

Table 1
Processing times per elementary operations

Texture creation Matrix multiplication Sigmoid

GPU 0.469000 0.030000 0.031000
CPU 11.743

As shown in Table 1, we get a 20-fold performance enhance-
ment using an ATI RADEON 9700 PRO board compared
to CPU-only processing.

Acknowledgements

This work was supported by the Soongsil University Re-
search Fund.

References

[1] A. Moravanszky, Linear algebra on the GPU, in: W.F. Engel
(Ed.), Shader X 2, Wordware Publishing, Texas, 2003.

[2] D. Manocha, Interactive geometric & scienti/c computations
using graphics hardware, SIGGRAPH 2003 Tutorial Course
#11.

[3] K. Jung, Neural network-based text location in color images,
Pattern Recog. Lett. 22 (14) (2001) 1503–1515.

[4] J. Zhu, P. Sutton, FPGA implementation of neural networks
—a survey of a decade of progress, Proceedings of the 13th
International Conference on Field Programmable Logic and
Applications (FPL 2003), Lisbon, 2003, pp. 1062–1066.

3권 325

