• Title/Summary/Keyword: Multi-dimensional

Search Result 2,858, Processing Time 0.026 seconds

Multi-Dimensional Record Scan with SIMD Vector Instructions (SIMD 벡터 명령어를 이용한 다차원 레코드 스캔)

  • Cho, Sung-Ryong;Han, Hwan-Soo;Lee, Sang-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.732-736
    • /
    • 2010
  • Processing a large amount of data becomes more important than ever. Particularly, the information queries which require multi-dimensional record scan can be efficiently implemented with SIMD instruction sets. In this article, we present a SIMD record scan technique which employs row-based scanning. Our technique is different from existing SIMD techniques for predicate processes and aggregate operations. Those techniques apply SIMD instructions to the attributes in the same column of the database, exploiting the column-based record organization of the in-memory database systems. Whereas, our SIMD technique is useful for multi-dimensional record scanning. As the sizes of registers and the memory become larger, our row-based SIMD scan can have bigger impact on the performance. Moreover, since our technique is orthogonal to the parallelization techniques for multi-core processors, it can be applied to both uni-processors and multi-core processors without too many changes in the software architectures.

Multi-Dimensional Traveling Salesman Problem Scheme Using Top-n Skyline Query (Top-n 스카이라인 질의를 이용한 다차원 외판원 순회문제 기법)

  • Jin, ChangGyun;Oh, Dukshin;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The traveling salesman problem is an algorithmic problem tasked with finding the shortest route that a salesman visits, visiting each city and returning to the started city. Due to the exponential time complexity of TSP, it's hard to implement on cases like amusement park or delivery. Also, TSP is hard to meet user's demand that is associated with multi-dimensional attributes like travel time, interests, waiting time because it uses only one attribute - distance between nodes. This paper proposed Top-n Skyline-Multi Dimension TSP to resolve formerly adverted problems. The proposed algorithm finds the shortest route faster than the existing method by decreasing the number of operations, selecting multi-dimensional nodes according to the dominance of skyline. In the simulation, we compared computation time of dynamic programming algorithm to the proposed a TS-MDT algorithm, and it showed that TS-MDT was faster than dynamic programming algorithm.

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

Multi-dimensional Representation and Correlation Analyses of Acoustic Cues for Stops (폐쇄음 음향 단서의 다차원 표현과 상관관계 분석)

  • Yun, Weon-Hee
    • MALSORI
    • /
    • v.55
    • /
    • pp.45-60
    • /
    • 2005
  • The purpose of this paper is to represent values of acoustic cues for Korean oral stops in the multi-dimensional space, and to attempt to find possible relationships among acoustic cues through correlation analyses. The acoustic cues used for differentiation of 3 types of Korean stops are closure duration, voice onset time and fundamental frequency of a vowel after a stop. The values of these cues are plotted in the two and three dimensional space to see what the critical cues are for separation of different types of stops. Correlation coefficient analyses show that multi-variate approach to statistical analysis is legitimate, and that there are statistically significant relationships among acoustic cues but Oey are not strong enough to make the conjecture that there is a possible relationship among the articulatory or laryngeal mechanisms employed by the acoustic cues.

  • PDF

A Study of Efficient Access Method based upon the Spatial Locality of Multi-Dimensional Data

  • Yoon, Seong-young;Joo, In-hak;Choy, Yoon-chul
    • Proceedings of the Korea Database Society Conference
    • /
    • 1997.10a
    • /
    • pp.472-482
    • /
    • 1997
  • Multi-dimensional data play a crucial role in various fields, as like computer graphics, geographical information system, and multimedia applications. Indexing method fur multi-dimensional data Is a very Important factor in overall system performance. What is proposed in this paper is a new dynamic access method for spatial objects called HL-CIF(Hierarchically Layered Caltech Intermediate Form) tree which requires small amount of storage space and facilitates efficient query processing. HL-CIF tree is a combination of hierarchical management of spatial objects and CIF tree in which spatial objects and sub-regions are associated with representative points. HL-CIF tree adopts "centroid" of spatial objects as the representative point. By reflecting objects′sizes and positions in its structure, HL-CIF tree guarantees the high spatial locality of objects grouped in a sub-region rendering query processing more efficient.

  • PDF

Path Planning for Parking using Multi-dimensional Path Grid Map (다차원 경로격자지도를 이용한 주차 경로계획 알고리즘)

  • Choi, Jong-An;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2017
  • Recent studies on automatic parking have actively adopted the technology developed for mobile robots. Among them, the path planning scheme plans a route for a vehicle to reach a target parking position while satisfying the kinematic constraints of the vehicle. However, previous methods require a large amount of computation and/or cannot be easily applied to different environmental conditions. Therefore, there is a need for a path planning scheme that is fast, efficient, and versatile. In this study, we use a multi-dimensional path grid map to solve the above problem. This multi-dimensional path grid map contains a route which has taken a vehicle's kinematic constraints into account; it can be used with the $A^*$ algorithm to plan an efficient path. The proposed method was verified using Prescan which is a simulation program based on MATLAB. It is shown that the proposed scheme can successfully be applied to both parallel and vertical parking in an efficient manner.

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

A Multi-Dimensional Radio Resource Scheduling Scheme for MIMO-OFDM Wireless Systems

  • Li, Lei;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.401-409
    • /
    • 2006
  • Orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) technologies provide additional dimensions of freedom with spectral and spatial resources for radio resource management. Multi-dimensional radio resource management has recently been identified to exploit the full dimensions of freedom for more flexible and efficient utilization of scarce radio spectrum while provide diverse quality of service (QoS) guarantees. In this work, a multi-dimensional radio resource scheduling scheme is proposed to achieve above goals in hybrid orthogonal frequency division multiple access (OFDMA) and space division multiple access (SDMA) systems. Cochannel interference (CCI) introduced by frequency reuse under SDMA is eliminated by frequency division and time division between highly interfered users. This scheme maximizes system throughput subjected to the minimum data rate guarantee. for heterogeneous users and transmit power constraint. By numerical examples, system throughput and fairness superiority of the our scheduling scheme are verified.

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.