Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- J. Mitola III and G. Jr. Maguire, "Cognitive radio: Making software radios more personal," IEEE Pers. Commun., vol. 6, no. 4, pp.13-18, 1999.
- "Report of the spectrum efficiency working group," FCC, Tech. Rep., pp. 2-35, Nov. 2002.
- R. W. Broderson, A. Wolisz, D. Cabric, S. M. Mishra, and D. Willkomm, "A cognitive radio approach for usage of virtual unlicensed spectrum," Tech. Rep., White Paper, 2004.
- K. S. Tang, "Genetic algorithms and their applications," IEEE Signal Process. Mag., 1996.
- T. R. Newman, "Cognitive engine implementation for wireless multicarrier transceivers," Wireless Commun. Mobile Comput., pp. 1129-1142, 2007.
- N. Srinivas and K. Dev, "Multiobjective optimization using nondominated sorting in genetic algorithms," Evolutionary Computation, vol. 2(3), pp. 221-248, 1994. https://doi.org/10.1162/evco.1994.2.3.221
- N. Baldo and M. Zorzi, "Fuzzy logic for cross-layer optimization in cognitive radio networks," IEEE Commun. Mag., vol. 46, pp. 64-71, 2008.
- M. M. Gupta, L. Jin, and N. Homma, Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory. John Wiley & Sons, 2004.
- X. Xia and Q. Liang, "Bottom-up cross-layer optimization for mobile ad hoc networks," in Proc. IEEE MILCOM, 2005, pp. 1-7.
- Z. Tabacovic, S. Grgic, and M. Grgic, "Fuzzy logic power control in cognitive radio," in Proc. IWSSIP, 2009.
- N. Baldo and M. Zorzi, "Learning and adaptation in cognitive radios using neural networks," in Proc. IEEE Consumer Comm. Netw., 2008, pp. 998-1003.
- S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983. https://doi.org/10.1126/science.220.4598.671
- L. Ingber, "Very fast simulated re-annealing," Math. Comput. Modelling, vol. 12, pp. 967-973, 1989. https://doi.org/10.1016/0895-7177(89)90202-1
- D. E. Goldberg, B. Korb, and K. Deb, "Messy genetic algorithms: Motivations, analysis, and first results," Clearing-house Genetic Algorithms, 1989.
- D. Gozupek and F. Alagoz, "Genetic algorithm-based scheduling in cognitive radio networks under interference temperature constraints," Int. J. Commun. Syst., pp. 239-257, 2011.
- J. F. Hauris, "Genetic algorithm optimization in a cognitive radio for autonomous vehicle communications," in Proc. IEEE CIRA, Jacksonville, FL, USA, 2007.
- C. A. Coello, "An updated survey of GA-based multiobjective optimization techniques," ACM Comput. Surveys, vol. 32(2), 2000.
- SEAMCAT Handbook, pp. 39-70, Jan. 2010.
- Federal Communications Commission, FCC 08-260, 2010.
- Federal Communications Commission, FCC 10-174, 2010.
- P. Stavoulakis, Interference Analysis and Reduction for Wireless Systems. Artech House, 2003.
- Federal Communications Commission, Notice of Inquiry and Proposed Rule Making, ET Docket, 03-289, 2003.
- T. C. Clancy and W. A. Arbaugh, "Measuring interference temperature," in Proc. Virginia Tech. MPRG Symp. Wireless Pers. Commun., June 2010.
- B. Sklar, Digital Communications Fundamentals and Applications. Prenctice-Hall International, pp. 155-182, 2001.
- A. Konak, D. W. Coit, and A. E. Smith, "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Eng. Syst. Safety 91, pp. 992-1007, 2006. https://doi.org/10.1016/j.ress.2005.11.018
- S. Chen and A. M. Wyglinski, "Cognitive radio-enable distributed cross-layer optimization via genetic algorithms," in Proc. CROWNCOM, 2009.
- K. Deb, A. Pratap, S. Agarwal, and T. A. Meyarivan, "Fast and elitist multi-objective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6(2), pp. 182-197, 2002. https://doi.org/10.1109/4235.996017
- M. T. Jensen, "Reducing the run-time complexity of multi-objective EAs: The NSGA-II and other algorithms," IEEE Trans. Evol. Comput., vol. 7, Oct. 2012.
- A. I. Perez-Neira, J. Bas, and M. A. Lagunas, "A neuro-fuzzy system for source location and tracking in wireless communications," Signals Commun. Tech., pp.119-148, 2005.