• Title/Summary/Keyword: Multi-Joint Robot

Search Result 105, Processing Time 0.027 seconds

Telemedicine robot system for visual inspection and auscultation using WebRTC (WebRTC를 이용한 육안 검사 및 청진용 원격진료 로봇 시스템)

  • Jae-Sam Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • When a doctor examines a patient in a hospital, the doctor directly checks the patient's condition and conducts a face-to-face diagnosis through dialogue with the patient. However, it is often difficult for doctors to directly treat patients. Recently, several types of telemedicine systems have been developed. However, the systems have lack of capabilities to observe heart disease, neck condition, skin condition, inside ear condition, etc. To solve this problem, in this paper, an interactive telemedicine robot system with autonomous driving in a room capable of visual examination and auscultation of patients is developed. The developed robot can be controlled remotely through the WebRTC platform to move toward the patient and check a patient's condition under the doctor's observation using the multi-joint robot arm. The video information, audio information, patient's heart sound, and other data obtained remotely from patients can be transmitted to a doctor through the web RTC platform. The developed system can be applied to the various places where doctors are not possible to attend.

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.

A Study of Kinematic Selection and Design of Manipulator Aimed to Specified Task (작업지향형 매니퓰레이터 기구설계기법에 관한 연구)

  • Lee, Hee-Don;Yu, Seung-Nam;Ko, Kwang-Jin;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.939-944
    • /
    • 2007
  • Generally, development of a robot capable of fast movements or high payloads is progressed by the analysis of dynamic characteristics, DOF positioning, actuator selection, structure of links, and so on. This paper highlights the design of a robot manipulator handled by a human for man-machine cooperation. The requirements of the proposed system include its having multi-DOF(Degree of Freedom)and the capacity for a high payload in the condition of its maximum reach. The primary investigation factors are motion range, performance within the motion area, and reliabilityduring the handling of heavy materials. Traditionally, the mechanical design of robots has been viewed as a problem of packaging motors and electronics into a reasonable structure. This process usually transpires with heavy reliance of designerexperience. Not surprisingly, the traditional design process contains no formally defined rules for achieving desirable results, as there is little opportunity for quantitative feedback during the formative stages. This work primarily focuses on the selection of proper joint types and link lengths, considering a specific task type and motion requirements of the heavy material handling.

  • PDF

Mechanical fastening and joining technologies to using multi mixed materials of car body (차체 소재 다변화에 따른 체결 및 접합기술)

  • Kim, Yong;Park, Ki-Young;Kwak, Sung-Bok
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.12-18
    • /
    • 2015
  • The ultimate goal of developing body is revealed the "lightweight" at latest EuroCarBody conference 2012 and the most core technology is joining process to make lightweight car body design. Accordingly, in this study, the car body assembly line for the assembly process applies to any introduction, particularly in the assembly of aluminum alloy and composite materials applied by the process for the introductory approached. Process were largely classified by welding (laser, arc, resistance, and friction stir welding), bonding (epoxy bonding) and mechanical fastening (FDS, SPR, Bolting and clinching). Applications for each process issues in the case and the applicable award was presented, based on the absolute strength of the test specimens and joining characteristics for comparative analysis were summarized. Finally, through this paper, we would tried to establish the characteristics of the joint for lightweight structure.

A Study on the PTP Motion of Robot Manipulators by Neural Networks (신경 회로망에 의한 로보트 매니퓰레이터의 PTP 운동에 관한 연구)

  • Kyung, Kye-Hyun;Ko, Myoung-Sam;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.679-684
    • /
    • 1989
  • In this paper, we describe the PTP notion of robot manipulators by neural networks. The PTP motion requires the inverse kinematic redline and the joint trajectory generation algorithm. We use the multi-layered Perceptron neural networks and the Error Back Propagation(EBP) learning rule for inverse kinematic problems. Varying the number of hidden layers and the neurons of each hidden layer, we investigate the performance of the neural networks. Increasing the number of learning sweeps, we also discuss the performance of the neural networks. We propose a method for solving the inverse kinematic problems by adding the error compensation neural networks(ECNN). And, we implement the neural networks proposed by Grossberg et al. for automatic trajectory generation and discuss the problems in detail. Applying the neural networks to the current trajectory generation problems, we can refute the computation time for trajectory generation.

  • PDF

Design of a Robotic Device for Effective Shoulder Rehabilitation (효과적인 견관절 재활을 위한 로봇의 설계)

  • Lee, Kyoung-Soub;Park, Jeong-Ho;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.505-510
    • /
    • 2017
  • This paper presents a low-cost robotic device for shoulder rehabilitation, which is capable of treating various shoulder disabilities. A 3-DOF passive shoulder joint tracking module was designed to allow for translational motion of the shoulder joint center during arm swing, which is essential for natural shoulder movement. The weight of the user's arm and the device were compensated for by springs, to enable gravity-free shoulder motion. In order to reduce the device's cost, only one actuator was used, which can be aligned with the user's shoulder joint in various orientations. The device is capable of implementing five representative shoulder motions, including flexion/extension, abduction/adduction, horizontal abd/adduction, internal/external rotation, and oblique raise. The proposed low-cost shoulder rehabilitation robot is expected to provide effective rehabilitation for patients with various shoulder impairments.

Robot Arm Design with Nonlinearity and Workspace Consideration (비선형 효과 및 작업 공간을 고려한 로보트 팔의 설계)

  • Lee, Sang-Jo;Yun, Yeong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.20-30
    • /
    • 1988
  • Using the design parameters of multi-joint manipulator, worspace of the manipulator were evaluated analytically, and the relation between such design parameters and nonlinearity of the manipulator were presented dynamically. The ratio of the volumes of a manipulator's workspace to the cube of its total link length presents a kinematic performance index [NVI] for the manipullator. It is possible to geometrically represent the manipulator dynamics with the generalized inertia ellipsoid (GIE). The relation between the GIE configuration and the characteristics of manipulator dynamics was analysed in terms of inertia and nonlinear forces (Coliolis and centrifugal forces). The nonlinearity caused by the change of the GIE configuration were affected by the difference between the major and minor axes length of the GIE. The results of this investigationare applied to the optimal design of the manipulator.

  • PDF

A new training method for neuro-control of a manipulator (매니퓰레이터의 신경제어를 위한 새로운 학습 방법)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1022-1027
    • /
    • 1991
  • A new method to control a robot manipulator by neural networks is proposed. The controller is composed of both a PD controller and a neural network-based feedforward controller. MLP(multi-layer perceptron) neural network is used for the feedforward controller and trained by BP(back-propagation) learning rule. Error terms for BP learning rule are composed of the outputs of a PD controller and the acceleration errors of manipulator joints. We compare the proposed method with existing ones and contrast performances of them by simulation. Also, We discuss the real application of the proposed method in consideration of the learning time of the neural network and the time required for sensing the joint acceleration.

  • PDF

A Study for Safety Work Control System in the Narrow Space (협소 공간 작업을 위한 안전제어 시스템에 관한 연구)

  • Cho, Y.S.;Kim, H.S.;Song, I.S.;Jeong, C.S.;Yang, S.Y.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.62-65
    • /
    • 2010
  • Field robot represented by excavator can be applied for various working in manufacturing, construction, agriculture etc. Because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. Since the excavator operates in the hazardous working circumstance, operators exposed in harmful environment. Therefore, automation system has been investigated to protect from the harmful environment. In this paper, the method to construct the remote control system is proposed. The remote control system is consisted of a manual and auto mode. Manual mode controls a hydraulic cylinder as open loop control. and auto mode controls the end effecter of excavator using tracking control system. The efficiency of remote control system was evaluated through the field test.

  • PDF

Implementation of Technique for Movement Control of Multi-Joint Robot (다관절 로봇의 효율적인 동작제어를 위한 기술 구현)

  • Hyun-Seung Son;Woo-Yeol Kim;R. Young-Chul Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.593-596
    • /
    • 2008
  • 로봇 산업은 계속 성장 하고 있으나 개발 인력은 부족한 현실이다. 그래서 정부나 기업은 로봇 개발인력을 양성하기 위한 프로그램을 활성화 하고 있다. 다양한 환경에 적용할 수 있는 장점 때문에 다관절로봇은 실제 산업에서 활용도가 높다. 또한 다관절 로봇은 다양한 동작 응용으로 창의력과 응용력을 키울 수 있어 교육에 적합하다. 그러나 다관절 로봇은 많은 수의 모터를 동시에 제어해야 하기 때문에 전문적인 지식이 없을 경우 개발하기 어렵다. 다관절로봇을 교육에 응용하기 위해서는 누구나 쉽게 이용할 수 있는 제어 방법을 제공해야 한다. 본 논문에서는 다관절 로봇의 효율적인 동작제어를 위한 기술을 구현하여 피교육자가 로봇을 쉽고 빠르게 개발할 수 있었다. 적용사례로 18개의 모터가 사용되는 6족로봇에 제안한 방법을 사용하여 동작 개발과정을 보여주었다.